精英家教網 > 高中數學 > 題目詳情
在平面直角坐標系中,已知一個橢圓的中心在原點,左焦點為F(-
3
,0)
,且過D(2,0).
(1)求該橢圓的標準方程;
(2)若P是橢圓上的動點,點A(1,0),求線段PA中點M的軌跡方程.
(1)由已知得橢圓的半長軸a=2,半焦距c=
3
,則半短軸b=
a2-c2
=1.
又橢圓的焦點在x軸上,
∴橢圓的標準方程為
x2
4
+y2=1

(2)設線段PA的中點為M(x,y),點P的坐標是(x0,y0),
x=
x0+1
2
y=
y0
2
,得
x0=2x-1
y0=2y

∵點P在橢圓上,得
(2x-1)2
4
+(2y)2=1
,
∴線段PA中點M的軌跡方程是(x-
1
2
)2+4y2=1
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

橢圓
x2
2
+
y2
b2
=1
的焦點為F1,F2,兩條準線與x軸的交點分別為M,N,若|MN|≤2|F1F2|,則該橢圓離心率取得最小值時的橢圓方程為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設F1、F2是橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,P為直線x=-
3
2
a
上一點,△F1PF2是底角為30°的等腰三角形,則E的離心率為(  )
A.
1
2
B.
2
3
C.
3
4
D.
4
5

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若橢圓
x2
2
+
y2
m
=1
的離心率為
1
2
,則實數m等于( 。
A.
3
2
B.
3
8
C.
3
2
8
3
D.
3
8
2
3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,F1、F2是橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的兩焦點,過點F2作AB⊥x軸交橢圓于A、B兩點,若△F1AB為等腰直角三角形,且∠AF1B=90°,則橢圓的離心率是( 。
A.
2
-1
B.
2
2
C.3-2
2
D.2-
2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設橢圓
x2
6
+
y2
2
=1和雙曲線
x2
2
-
y2
2
=1的公共焦點為F1,F2,P是兩曲線的一個交點,則∠F1PF2=______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設點P是橢圓
x2
49
+
y2
24
=1
上一動點,F1,F2是橢圓的兩個焦點,若|PF1|=6,則|OP|長為( 。
A.5B.10C.8D.7

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

F1、F2是橢圓
x2
9
+
y2
7
=1
的兩個焦點,A為橢圓上一點,且∠F1AF2=60°,則△F1AF2的面積為( 。
A.
7
3
3
B.
7
2
C.
7
4
D.
7
5
2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

橢圓
x2
4
+
y2
m
=1
的離心率e∈[
2
2
,1)
,則m的取值范圍為______.

查看答案和解析>>

同步練習冊答案