設(shè)F1、F2是橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn),P為直線x=-
3
2
a
上一點(diǎn),△F1PF2是底角為30°的等腰三角形,則E的離心率為( 。
A.
1
2
B.
2
3
C.
3
4
D.
4
5
設(shè)x=-
3
2
a
交x軸于點(diǎn)M,
∵△F1PF2是底角為30°的等腰三角形
∴∠PF1F2=120°,|PF1|=|F2F1|,且|PF1|=2|F1M|.
∵P為直線x=-
3
2
a
上一點(diǎn),
∴2(-c+
3a
2
)=2c,解之得3a=4c
∴橢圓E的離心率為e=
c
a
=
3
4

故選:C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的上頂點(diǎn)為A,左頂點(diǎn)為B,F(xiàn)為右焦點(diǎn),過(guò)F作平行與AB的直線交橢圓于C、D兩點(diǎn).作平行四邊形OCED,E恰在橢圓上.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若平行四邊形OCED的面積為
6
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知F1,F(xiàn)2是橢圓
x2
16
+
y2
9
=1
的兩個(gè)焦點(diǎn),過(guò)F2的直線交橢圓于點(diǎn)A,B,若|AB|=5,則|AF1|-|BF2|等于( 。
A.3B.8C.13D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)橢圓
x2
36
+
y2
25
=1的焦點(diǎn)F1作直線l交橢圓于A、B兩點(diǎn),F(xiàn)2是此橢圓的另一個(gè)焦點(diǎn),則△ABF2的周長(zhǎng)為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓的兩個(gè)焦點(diǎn)分別為F1(0,-8),F(xiàn)2(0,8),且橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為20,則此橢圓的方程為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)P為橢圓
x2
45
+
y2
20
=1上且位于在第三象限內(nèi)一點(diǎn),且它與兩焦點(diǎn)連線互相垂直,若點(diǎn)P到直線4x-3y-2m+1=0的距離不大于3,則實(shí)數(shù)m的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

命題P“曲線sinα•x2+cosα•y2=1為焦點(diǎn)在y軸上的橢圓”,寫出讓命題P成立的一個(gè)充分條件______(請(qǐng)?zhí)顚戧P(guān)于α的值或區(qū)間)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知一個(gè)橢圓的中心在原點(diǎn),左焦點(diǎn)為F(-
3
,0)
,且過(guò)D(2,0).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若P是橢圓上的動(dòng)點(diǎn),點(diǎn)A(1,0),求線段PA中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知?jiǎng)狱c(diǎn)P(x,y)滿足:
(x+1)2+y2
+
(x-1)2+y2
=4,則點(diǎn)P的軌跡的離心率是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案