【題目】(數(shù)學(xué)文卷·2017屆湖北省黃岡市高三上學(xué)期期末考試第16題) “中國剩余定理”又稱“孫子定理”.1852年英國來華傳教偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲.1874年,英國數(shù)學(xué)家馬西森指出此法符合1801年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”. “中國剩余定理”講的是一個(gè)關(guān)于整除的問題,現(xiàn)有這樣一個(gè)整除問題:將2至2017這2016個(gè)數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列的項(xiàng)數(shù)為__________

【答案】134

【解析】能被3除余1且被5除余1的數(shù)即為被15除余1得數(shù),被15除余1得數(shù)構(gòu)成以16為首項(xiàng),15為公差的等差數(shù)列。由題意得 ,解得。所以此數(shù)列的項(xiàng)數(shù)為134.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩支排球隊(duì)進(jìn)行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局甲隊(duì)獲勝的概率是外,其余每局比賽甲隊(duì)獲勝的概率都是.假設(shè)各局比賽結(jié)果相互獨(dú)立.

1)分別求甲隊(duì)以30,31,32獲勝的概率;

2)若比賽結(jié)果為3031,則勝利方得3分、對(duì)方得0分;若比賽結(jié)果為3:2,則勝利方得2分、對(duì)方得1.求甲隊(duì)得分X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓和直線,橢圓的離心率,坐標(biāo)原點(diǎn)到直線的距離為.

(Ⅰ)求橢圓的方程;

(Ⅱ)已知定點(diǎn),若直線過點(diǎn)且與橢圓相交于兩點(diǎn),試判斷是否存在直線,使以為直徑的圓過點(diǎn)?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)處取得極值,且在點(diǎn)處的切線與直線平行.

(1)求的解析式;

(2)求函數(shù)的單調(diào)遞增區(qū)間及極值。

(3)求函數(shù)的最值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形所在平面與底面垂直,在直角梯形中, , .

(1)求證: 平面;

(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的左右焦點(diǎn)分別為, ,離心率為,點(diǎn)在橢圓上, , ,過與坐標(biāo)軸不垂直的直線與橢圓交于, 兩點(diǎn), , 的中點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點(diǎn),且,求直線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(數(shù)學(xué)文卷·2017屆江西省玉山一中高三上學(xué)期第二次月考第16題)中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對(duì)稱美,如圖所示的太極圖是由黑白兩個(gè)魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對(duì)稱統(tǒng)一的形式美、和諧美.給出定義:能夠?qū)AO的周長(zhǎng)和面積同時(shí)平分的函數(shù)稱為這個(gè)圓的“優(yōu)美函數(shù)”.給出下列命題:對(duì)于任意一個(gè)圓O,其“優(yōu)美函數(shù)”有無數(shù)個(gè);②函數(shù)可以是某個(gè)圓的“優(yōu)美函數(shù)”;③正弦函數(shù)可以同時(shí)是無數(shù)個(gè)圓的“優(yōu)美函數(shù)”;④函數(shù)是“優(yōu)美函數(shù)”的充要條件為函數(shù)的圖象是中心對(duì)稱圖形.其中正確的命題是__(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圖1,平行四邊形中, , ,現(xiàn)將沿折起,得到三棱錐(如圖2),且,點(diǎn)為側(cè)棱的中點(diǎn).

(1)求證: 平面;

(2)求三棱錐的體積;

(3)在的角平分線上是否存在點(diǎn),使得平面?若存在,求的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)當(dāng)時(shí),求函數(shù)切線斜率中的最大值;

(Ⅱ)若關(guān)于的方程有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案