【題目】已知橢圓 )的左右焦點(diǎn)分別為, ,離心率為,點(diǎn)在橢圓上, , ,過與坐標(biāo)軸不垂直的直線與橢圓交于, 兩點(diǎn), , 的中點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點(diǎn),且,求直線所在的直線方程.

【答案】(Ⅰ); (Ⅱ)的直線方程為.

【解析】試題分析:

(1)利用題意結(jié)合余弦定理首先求得a,c的值,然后利用a,b,c的關(guān)系求得b的值即可得到橢圓的標(biāo)準(zhǔn)方程;

(2)直線的斜率存在,利用點(diǎn)斜式設(shè)出直線方程,將其與橢圓方程聯(lián)立,利用題意結(jié)合根與系數(shù)的關(guān)系得到關(guān)于實(shí)數(shù)k的方程,求解方程即可得到直線的斜率,然后求解直線方程即可.

試題解析:

(Ⅰ)由,得,

因?yàn)?/span>, ,

由余弦定理得,

解得, ,

,

∴橢圓的方程為

(Ⅱ)因?yàn)橹本的斜率存在,設(shè)直線方程為, , ,

聯(lián)立整理得,

由韋達(dá)定理知, ,

此時(shí),又,則,

,∴,得到

的直線方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、分別是橢圓 的左、右焦點(diǎn),點(diǎn)是橢圓上一點(diǎn),且.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓相交于,兩點(diǎn),若,其中為坐標(biāo)原點(diǎn),判斷到直線的距離是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求曲線在點(diǎn)處的切線方程;

(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值;

(3)若正實(shí)數(shù)滿足,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的方程為,雙曲線的一條漸近線與軸所成的夾角為,且雙曲線的焦距為.

(1)求橢圓的方程;

(2)設(shè)分別為橢圓的左,右焦點(diǎn),過作直線 (與軸不重合)交橢圓于, 兩點(diǎn),線段的中點(diǎn)為,記直線的斜率為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(數(shù)學(xué)文卷·2017屆湖北省黃岡市高三上學(xué)期期末考試第16題) “中國(guó)剩余定理”又稱“孫子定理”.1852年英國(guó)來華傳教偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲.1874年,英國(guó)數(shù)學(xué)家馬西森指出此法符合1801年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國(guó)剩余定理”. “中國(guó)剩余定理”講的是一個(gè)關(guān)于整除的問題,現(xiàn)有這樣一個(gè)整除問題:將2至2017這2016個(gè)數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列的項(xiàng)數(shù)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察圖中各正方形圖案,每條邊上有an個(gè)圓點(diǎn),第an個(gè)圖案中圓點(diǎn)的個(gè)數(shù)是an,按此規(guī)律推斷出所有圓點(diǎn)總和Snn的關(guān)系式為( 。

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用隨機(jī)模擬方法求函數(shù) x軸和直線x=1圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y=f(x)在區(qū)間[0,1]上的圖象是連續(xù)不斷的一條曲線,且恒有0f(x)1,可以用隨機(jī)模擬方法近似計(jì)算由曲線y=f(x)及直線x=0,x=1,y=0所圍成部分的面積S.先產(chǎn)生兩組(每組N個(gè))0~1區(qū)間上的均勻隨機(jī)數(shù)x1,x2,…,xNy1,y2,…,yN,由此得到N個(gè)點(diǎn)(xi,yi)(i=1,2,…,N).再數(shù)出其中滿足yif(xi)(i=1,2,…,N)的點(diǎn)數(shù)N1,那么由隨機(jī)模擬方法可得S的近似值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求在區(qū)間上的最大值和最小值;

(2)若在區(qū)間上,函數(shù)的圖像恒在直線下方,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案