16.某同學(xué)在研究性學(xué)習(xí)中,關(guān)于三角形與三角函數(shù)知識的應(yīng)用(約定三內(nèi)角A、B、C所對的邊分別是a,b,c)得出如下一些結(jié)論:
(1)若△ABC是鈍角三角形,則tanA+tanB+tanC>0;
(2)若△ABC是銳角三角形,則cosA+cosB>sinA+sinB;
(3)在三角形△ABC中,若A<B,則cos(sinA)<cos(tanB)
(4)在△ABC中,若$sinB=\frac{2}{5},tanC=\frac{3}{4}$,則A>C>B
其中錯誤命題的個數(shù)是( 。
A.0B.1C.2D.3

分析 (1)利用正切的和角公式變形形式tanA+tanB=tan(A+B)(1-tanAtanB)化簡整理.
(2)根據(jù)三角形是銳角三角形,得到A+B>90°,變形為B>90°-A,根據(jù)三角函數(shù)在第一象限的單調(diào)性,得到cosB<sinA,sinB>cosA,即可得解;
(3)當(dāng)B=$\frac{π}{2}$時,不等式不成立;
(4)根據(jù)sinB=$\frac{2}{5}$,討論B為銳角或鈍角,利用特殊角的三角函數(shù)值及正弦函數(shù)的增減性確定出B的范圍;根據(jù)tan C=$\frac{3}{4}$可知C為銳角,根據(jù)正切函數(shù)的增減性和特殊角的三角函數(shù)值得到角C的范圍,再根據(jù)內(nèi)角和定理得到A的范圍即可比較大。

解答 解:(1)∵tanA+tanB=tan(A+B)(1-tanAtanB),
∴tanA+tanB+tanC=tan(A+B)(1-tanAtanB)+tanC=tanAtanBtanC,
∴△ABC是鈍角三角形,可得:tanAtanBtanC<0,故錯誤;
(2)∵△ABC為銳角三角形,
∴A+B>90°,B>90°-A,
∴cosB<sinA,sinB>cosA,
∴cosB-sinA<0,sinB-cosA>0,
∴cosB-sinA<sinB-cosA,可得cosA+cosB<sinA+sinB,故錯誤;
(3)當(dāng)B=$\frac{π}{2}$時,tanB不存在,故錯誤;
(4)由tanC=$\frac{3}{4}$得到0<C<90°,且tan30°=$\frac{\sqrt{3}}{3}$<$\frac{3}{4}$<1=tan45°,
因?yàn)檎泻瘮?shù)在(0,90°)為增函數(shù),所以得到30°<C<45°;
由sinB=$\frac{2}{5}$可得到0<B<90°或90°<B<180°,
在0<B<90°時,sin30°=$\frac{1}{2}$>$\frac{2}{5}$,因?yàn)檎液瘮?shù)在(0,90°)為增函數(shù),得到0<B<30°;
在90°<B<180°時,sin150°=$\frac{1}{2}$>$\frac{2}{5}$,但是正弦函數(shù)在90°<B<180°為減函數(shù),得到B>150°,則B+C>180°,
矛盾,不成立.
所以0<B<30°.由B和C的取值得到A為鈍角,
所以A>C>B,故正確;
故選:D.

點(diǎn)評 本題考查兩角和的正切公式以及三角函數(shù)的符號,訓(xùn)練運(yùn)用公式熟練變形的能力,考查學(xué)生會根據(jù)三角函數(shù)值的范圍及三角函數(shù)的增減性和特殊角的三角函數(shù)值來比較角度的大小,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)已知$sinα=\frac{3}{5}$,$cosβ=\frac{4}{5}$,其中$α∈(\frac{π}{2},π)$,$β∈(0,\frac{π}{2})$,求cos(α+β);
(2)已知$cosα=\frac{1}{7}$,$cos(α-β)=\frac{13}{14}$,且$0<β<α<\frac{π}{2}$,求β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.我國古代數(shù)學(xué)名著《數(shù)書九章》有“米谷粒分”題:糧倉開倉收糧,有人送來米1524石,驗(yàn)得米內(nèi)夾谷,抽樣取米一把,數(shù)得254粒內(nèi)夾谷56粒,則這批米內(nèi)夾谷約為( 。
A.1365石B.336石C.168石D.134石

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若y=sinxsin(x+$\frac{π}{3}$+φ)是一個奇函數(shù),則φ可能的取值是( 。
A.$\frac{2π}{3}$B.$\frac{π}{6}$C.$\frac{π}{2}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱柱ABC-A1B1C1中側(cè)棱垂直于底面,AC⊥BC,點(diǎn)D是AB的中點(diǎn).
(Ⅰ)求證:AC⊥BC1
(Ⅱ)求證:A1C∥平面B1CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在數(shù)列{an}中,a1=1,并且對于任意n∈N*,都有${a_{n+1}}=\frac{a_n}{{2{a_n}+1}}$.
(1)證明數(shù)列$\left\{{\frac{1}{a_n}}\right\}$為等差數(shù)列,并求{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列bn=an.a(chǎn)n+1,求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(x)=sinx+3|sinx|在x∈[0,2π]與直線y=2a有兩個交點(diǎn),則a的取值范圍為( 。
A.(2,4)B.(1,3)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)Tn為數(shù)列{an}的前n項(xiàng)之積,即Tn=a1a2a3…an-1an,若a1=2,$\frac{1}{{{a_n}-1}}-\frac{1}{{{a_{n-1}}-1}}=1(n∈{N^*},n≥2)$,當(dāng)Tn=11時,n的值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=ax2+bx,若f(a)=8,則f(-a)=8-2ab.

查看答案和解析>>

同步練習(xí)冊答案