【題目】正三角形的邊長(zhǎng)為,將它沿高折疊,使點(diǎn)與點(diǎn)間的距離為,則四面體外接球的表面積為( )
A. B. C. D.
【答案】B
【解析】
四面體的三條側(cè)棱BD⊥AD、DC⊥DA,底面是等腰三角形,它的外接球就是它擴(kuò)展為三棱柱的外接球,求出三棱柱的底面中心連線的中點(diǎn)到頂點(diǎn)的距離,就是球的半徑,然后求球的表面積即可.
根據(jù)題意可知四面體的三條側(cè)棱BD⊥AD、DC⊥DA,底面是等腰三角形,它的外接球就是它擴(kuò)展為三棱柱的外接球,求出三棱柱的底面中心連線的中點(diǎn)到頂點(diǎn)的距離,就是球的半徑,
三棱柱中,底面△BDC,BD=CD=1,BC,∴∠BDC=120°,∴△BDC的外接圓的半徑為1
由題意可得:球心到底面的距離為,
∴球的半徑為r.
外接球的表面積為:4πr2=7π
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)指令(,),機(jī)器人在平面上能完成下列動(dòng)作,先原地旋轉(zhuǎn)弧度(為正時(shí),按逆時(shí)針?lè)较蛐D(zhuǎn),為負(fù)時(shí),按順時(shí)針?lè)较蛐D(zhuǎn)),再朝其面對(duì)的方向沿直線行走距離r;
(1)現(xiàn)機(jī)器人在平面直角坐標(biāo)系的坐標(biāo)原點(diǎn),且面對(duì)x軸正方向,試給機(jī)器人下一個(gè)指令,使其移動(dòng)到點(diǎn);
(2)機(jī)器人在完成該指令后,發(fā)現(xiàn)在點(diǎn)處有一小球,正向坐標(biāo)原點(diǎn)作勻速直線滾動(dòng),已知小球滾動(dòng)的速度為機(jī)器人直線行走速度的2倍,若忽略機(jī)器人原地旋轉(zhuǎn)所需的時(shí)間,問(wèn)機(jī)器人最快可在何處截住小球?并給出機(jī)器人截住小球所需的指令?(結(jié)果用反三角函數(shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)若在上單調(diào)遞增,求的取值范圍;
(2)若有兩個(gè)極值點(diǎn),,,證明:(i);(ii).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的漸近線方程為,一個(gè)焦點(diǎn)為.
(1)求雙曲線的方程;
(2)過(guò)雙曲線上的任意一點(diǎn),分別作這兩條漸近線的平行線與這兩條漸近線得到四邊形,證明四邊形的面積是一個(gè)定值;
(3)設(shè)直線與在第一象限內(nèi)與漸近線所圍成的三角形繞著軸旋轉(zhuǎn)一周所得幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,為橢圓的左、右焦點(diǎn),過(guò)右焦點(diǎn)的直線與橢圓交于兩點(diǎn),且的周長(zhǎng)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若點(diǎn)A是第一象限內(nèi)橢圓上一點(diǎn),且在軸上的正投影為右焦點(diǎn),過(guò)點(diǎn)作直線分別交橢圓于兩點(diǎn),當(dāng)直線的傾斜角互補(bǔ)時(shí),試問(wèn):直線的斜率是否為定值;若是,請(qǐng)求出其定值;否則,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩直線方程與,點(diǎn)在上運(yùn)動(dòng),點(diǎn)在上運(yùn)動(dòng),且線段的長(zhǎng)為定值.
(Ⅰ)求線段的中點(diǎn)的軌跡方程;
(Ⅱ)設(shè)直線與點(diǎn)的軌跡相交于,兩點(diǎn),為坐標(biāo)原點(diǎn),若,求原點(diǎn)的直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問(wèn)題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開(kāi)一壺水所用時(shí)間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點(diǎn)圖(如下圖).
表中,.
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)更適宜作燒水時(shí)間關(guān)于開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類(lèi)型?(不必說(shuō)明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)若單位時(shí)間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問(wèn)求得的回歸方程知為多少時(shí),燒開(kāi)一壺水最省煤氣?
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)值分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的方程為,圓與軸相切于點(diǎn),與軸正半軸相交于、兩點(diǎn),且,如圖1.
(1)求圓的方程;
(2)如圖1,過(guò)點(diǎn)的直線與橢圓相交于、兩點(diǎn),求證:射線平分;
(3)如圖2所示,點(diǎn)、是橢圓的兩個(gè)頂點(diǎn),且第三象限的動(dòng)點(diǎn)在橢圓上,若直線與軸交于點(diǎn),直線與軸交于點(diǎn),試問(wèn):四邊形的面積是否為定值?若是,請(qǐng)求出這個(gè)定值,若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示多面體,其底面為矩形且,四邊形為平行四邊形,點(diǎn)在底面內(nèi)的投影恰好是的中點(diǎn).
(1)已知為線段的中點(diǎn),證明:平面;
(2)若二面角大小為,求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com