【題目】為了解某班學(xué)生喜歡數(shù)學(xué)是否與性別有關(guān),對本班人進行了問卷調(diào)查得到了如下的列聯(lián)表,已知在全部人中隨機抽取人抽到喜歡數(shù)學(xué)的學(xué)生的概率為.
喜歡數(shù)學(xué) | 不喜歡數(shù)學(xué) | 合計 | |
男生 | |||
女生 | |||
合計 |
(1)請將上面的列聯(lián)表補充完整(不用寫計算過程);
(2)能否在犯錯誤的概率不超過的前提下認為喜歡數(shù)學(xué)與性別有關(guān)?說明你的理由;
(3)現(xiàn)從女生中抽取人進一步調(diào)查,設(shè)其中喜歡數(shù)學(xué)的女生人數(shù)為,求的分布列與期望.
下面的臨界表供參考:
(參考公式:,其中)
【答案】(1)列聯(lián)表見解析;(2)能,理由見解析;(3)分布列見解析,.
【解析】
(1)由題意可知,全部人中喜歡數(shù)學(xué)的學(xué)生人數(shù)為,據(jù)此可完善列聯(lián)表;
(2)根據(jù)列聯(lián)表中的數(shù)據(jù)計算出的觀測值,結(jié)合臨界值表可得出結(jié)論;
(3)由題意可知,隨機變量的可能取值有、、,利用超幾何分布可得出隨機變量的概率分布列,并由此可計算出隨機變量的數(shù)學(xué)期望值.
(1)列聯(lián)表補充如下:
喜歡數(shù)學(xué) | 不喜歡數(shù)學(xué) | 合計 | |
男生 | |||
女生 | |||
合計 |
(2),
在犯錯誤的概率不超過的前提下,認為喜歡數(shù)學(xué)與性別有關(guān);
(3)喜歡數(shù)學(xué)的女生人數(shù)的可能取值為、、,
其概率分別為,,
,
故隨機變量的分布列為:
的期望值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】山東省于2015年設(shè)立了水下考古研究中心,以此推動全省的水下考古、水下文化遺產(chǎn)保護等工作;水下考古研究中心工作站,分別設(shè)在位于劉公島的中國甲午戰(zhàn)爭博物院和威海市博物館。為對劉公島周邊海域水底情況進行詳細了解,然后再選擇合適的時機下水探摸、打撈,省水下考古中心在一次水下考古活動中,某一潛水員需潛水米到水底進行考古作業(yè),其用氧量包含以下三個方面:
①下潛平均速度為米/分鐘,每分鐘的用氧量為升;
②水底作業(yè)時間范圍是最少10分鐘最多20分鐘,每分鐘用氧量為0.4升;
③返回水面時,平均速度為米/分鐘,每分鐘用氧量為0.32升.
潛水員在此次考古活動中的總用氧量為升.
(Ⅰ)如果水底作業(yè)時間是分鐘,將表示為的函數(shù);
(Ⅱ)若,水底作業(yè)時間為20分鐘,求總用氧量的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P是拋物線C:上任意一點,過點P作直線PH⊥x軸,點H為垂足.點M是直線PH上一點,且在拋物線的內(nèi)部,直線l過點M交拋物線C于A、B兩點,且點M是線段AB的中點.
(1)證明:直線l平行于拋物線C在點P處切線;
(2)若|PM|=, 當點P在拋物線C上運動時,△PAB的面積如何變化?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形的邊長為,已知,將沿邊折起,折起后點在平面上的射影為點,則翻折后的幾何體中有如下描述:①與所成角的正切值為;②;③;④平面平面,其中正確的命題序號為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點.
(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;
(Ⅲ)棱PB上是否存在點F,使得CF∥平面PAE?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱臺中,點在上,且,點是內(nèi)(含邊界)的一個動點,且有平面平面,則動點的軌跡是( )
A. 平面B. 直線C. 線段,但只含1個端點D. 圓
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的左焦點為,過點的直線交橢圓于,兩點,的最大值是,的最小值是,且滿足.
(1)求橢圓的離心率;
(2)設(shè)線段的中點為,線段的垂直平分線與軸、軸分別交于,兩點,是坐標原點,記的面積為,的面積為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓臺的上、下底面半徑分別為、,母線長,從圓臺母線的中點拉一條繩子繞圓臺側(cè)面轉(zhuǎn)到點(在下底面),求:
(1)繩子的最短長度;
(2)在繩子最短時,上底圓周上的點到繩子的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一輛汽車從市出發(fā)沿海岸一條筆直公路以每小時的速度向東均速行駛,汽車開動時,在市南偏東方向距市且與海岸距離為的海上處有一快艇與汽車同時出發(fā),要把一份稿件交給這汽車的司機.
(1)快艇至少以多大的速度行駛才能把稿件送到司機手中?
(2)在(1)的條件下,求快艇以最小速度行駛時的行駛方向與所成的角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com