省工商局于2003年3月份,對(duì)全省流通領(lǐng)域的飲料進(jìn)行了質(zhì)量監(jiān)督抽查,結(jié)果顯示,某種剛進(jìn)入市場(chǎng)的x飲料的合格率為80%,現(xiàn)有甲、乙、丙3人聚會(huì),選用6瓶x飲料,并限定每人喝2瓶.則甲喝2瓶合格的x飲料的概率是________.
0.64
記“第一瓶x飲料合格”為事件A1,“第二瓶x飲料合格”為事件A2,A1與A2是相互獨(dú)立事件,“甲喝2瓶x飲料都合格就是事件A1、A2同時(shí)發(fā)生,根據(jù)相互獨(dú)立事件的概率乘法公式得P(A1·A2)=P(A1)·P(A2)=0.8×0.8=0.64.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

佛山某學(xué)校的場(chǎng)室統(tǒng)一使用“佛山照明”的一種燈管,已知這種燈管使用壽命(單位:月)服從正態(tài)分布,且使用壽命不少于個(gè)月的概率為,使用壽命不少于個(gè)月的概率為.
(1)求這種燈管的平均使用壽命;
(2)假設(shè)一間功能室一次性換上支這種新燈管,使用個(gè)月時(shí)進(jìn)行一次檢查,將已經(jīng)損壞的燈管換下(中途不更換),求至少兩支燈管需要更換的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列式子成立的是( 。
A.P(A|B)=P(B|A)B.0<P(B|A)<1C.P(AB)=P(A)•P(B|A)D.P(A∩B|A)=P(B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一批產(chǎn)品需要進(jìn)行質(zhì)量檢驗(yàn),質(zhì)檢部門規(guī)定的檢驗(yàn)方案是:先從這批產(chǎn)品中任取3件作檢驗(yàn),若3件產(chǎn)品都是合格品,則通過(guò)檢驗(yàn);若有2件產(chǎn)品是合格品,則再?gòu)倪@批產(chǎn)品中任取1件作檢驗(yàn),這1件產(chǎn)品是合格品才能通過(guò)檢驗(yàn);若少于2件合格品,則不能通過(guò)檢驗(yàn),也不再抽檢. 假設(shè)這批產(chǎn)品的合格率為80%,且各件產(chǎn)品是否為合格品相互獨(dú)立.
(1)求這批產(chǎn)品通過(guò)檢驗(yàn)的概率;
(2)已知每件產(chǎn)品檢驗(yàn)費(fèi)為125元,并且所抽取的產(chǎn)品都要檢驗(yàn),記這批產(chǎn)品的檢驗(yàn)費(fèi)為元,求的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲、乙兩人破譯一密碼,它們能破譯的概率分別為,試求:
(1)兩人都能破譯的概率;
(2)兩人都不能破譯的概率;
(3)恰有一人能破譯的概率;
(4)至多有一人能破譯的概率;
(5)若要使破譯的概率為99%,至少需要多少乙這樣的人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

將一枚硬幣連續(xù)拋擲5次,5次都出現(xiàn)正面朝上的概率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率為,兩人間每次射擊是否擊中目標(biāo)互不影響。
(1)求乙至多擊中目標(biāo)2次的概率;
(2)求甲恰好比乙多擊中目標(biāo)1次的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)隨機(jī)變量X的分布列如下:
X
0
5
10
20
P
0.1
α
β
0.2
若數(shù)學(xué)期望,則方差       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

高三某班有60名學(xué)生(其中女生有20名),三好學(xué)生占,而且三好學(xué)生中女生占一半,現(xiàn)在從該班任選一名學(xué)生參加座談會(huì),則在已知沒有選上女生的條件下,選上的是三好學(xué)生的概率是(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案