【題目】設(shè)函數(shù)f(x)=ax﹣(k﹣1)ax(a>0且a≠1)是定義域為R的奇函數(shù).
(1)求k值;
(2)若f(1)<0,試判斷y=f(x)的單調(diào)性并求使不等式f(x2+tx)+f(4﹣x)<0恒成立的t的取值范圍;
(3)若f(1)= ,g(x)=a2x+a2x﹣2f(x),求k∈N+在[1,+∞)上的最小值.

【答案】
(1)解:∵f(x)是定義域為R的奇函數(shù),∴f(0)=0,

∴1﹣(k﹣1)=0,∴k=2


(2)解:f(x)=ax﹣ax(a>0且a≠1),

若f(1)<0,則a﹣ <0,

∵a>0且a≠1,

∴a2﹣1<0,即0<a<1

∵ax單調(diào)遞減,ax單調(diào)遞增,

故f(x)在R上單調(diào)遞減.

不等式化為f(x2+tx)<f(x﹣4),

∴x2+tx>x﹣4,即x2+(t﹣1)x+4>0恒成立

∴△=(t﹣1)2﹣16<0,解得﹣3<t<5


(3)解: ,

,

g(x)=22x+22x﹣2(2x﹣2x)=(2x﹣2x2﹣2(2x﹣2x)+2

令t=2x﹣2x

∵t=2x﹣2x在[1,+∞)上為遞增的,

∴設(shè)h(t)=t2﹣2t+2=(t﹣1)2+1,

,

即g(x)在[1,+∞)上的最小值為


【解析】(1)根據(jù)函數(shù)奇偶性的定義和性質(zhì)進行求解即可.(2)根據(jù)不等式求出a的取值范圍,判斷函數(shù)的單調(diào)性,將不等式恒成立進行轉(zhuǎn)化即可.(3)利用換元法,結(jié)合一元二次函數(shù)單調(diào)性的性質(zhì)進行求解即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的函數(shù)F(x)的圖象,由指數(shù)函數(shù)f(x)=ax與冪函數(shù)g(x)=xb“拼接”而成.

(1)求F(x)的解析式;
(2)比較ab與ba的大;
(3)已知(m+4)b<(3﹣2m)b , 求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分14分)已知是函數(shù)的一個極值點.

)求

)求函數(shù)的單調(diào)區(qū)間;

)若直線與函數(shù)的圖象有3個交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列中, , ,

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2mx+3m+4,
(1)若f(x)在(﹣∞,1]上單調(diào)遞減,求m的取值范圍;
(2)求f(x)在[0,2]上的最大值g(m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題:
①定義在R上的函數(shù)f(x)滿足f(﹣2)=f(2),則f(x)不是奇函數(shù)
②定義在R上的函數(shù)f(x)恒滿足f(﹣x)=|f(x)|,則f(x)一定是偶函數(shù)
③一個函數(shù)的解析式為y=x2 , 它的值域為{0,1,4},這樣的不同函數(shù)共有9個
④設(shè)函數(shù)f(x)=lnx,則對于定義域中的任意x1 , x2(x1≠x2),恒有 ,
其中為真命題的序號有(填上所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直線坐標系中,以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線的參數(shù)方程為為參數(shù)),曲線的極坐標方程為.

(1)直線的普通方程和曲線的參數(shù)方程;

(2)設(shè)點上, 處的切線與直線垂直,求的直角坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=2sin(2x+ )的圖象向右平移 個周期后,所得圖象對應(yīng)的函數(shù)為(
A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(2x﹣
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為實數(shù),函數(shù).

(1)若是函數(shù)的一個極值點,求實數(shù)的取值;

(2)設(shè),若,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案