【題目】已知為實數(shù),函數(shù).
(1)若是函數(shù)的一個極值點,求實數(shù)的取值;
(2)設,若,使得成立,求實數(shù)的取值范圍.
【答案】(1) ,(2) .
【解析】試題分析:(1)求出函數(shù)f(x)定義域,函數(shù)的導函數(shù)f′(x),假設存在實數(shù)a,使f(x)在x=3處取極值,則f′(3)=0,求出a,驗證推出結果.
(2)由f (x0)≤g(x0) 得:(x0﹣lnx0)a≥x02﹣2x0,記F(x)=x﹣lnx(x>0),求出F′(x),推出F(x)≥F(1)=1>0,轉化a≥,記G(x)=,x∈[,e]求出導函數(shù),求出最大值,列出不等式求解即可.
解析:(1)函數(shù)定義域為 ,
.
∵是函數(shù)的一個極值點,∴,解得.
經(jīng)檢驗時, 是函數(shù)的一個極小值點,符合題意,
∴.
(2)由,得,
記,
∴,
∴當 時, , 單調(diào)遞減;
當時, , 單調(diào)遞増.
∴,
∴,記,
∴ .
∵,∴,
∴,
∴時, , 單調(diào)遞減;
時, , 單調(diào)遞增,
∴,
∴.
故實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=ax﹣(k﹣1)a﹣x(a>0且a≠1)是定義域為R的奇函數(shù).
(1)求k值;
(2)若f(1)<0,試判斷y=f(x)的單調(diào)性并求使不等式f(x2+tx)+f(4﹣x)<0恒成立的t的取值范圍;
(3)若f(1)= ,g(x)=a2x+a﹣2x﹣2f(x),求k∈N+在[1,+∞)上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且asinB=﹣bsin(A+ ).
(1)求A;
(2)若△ABC的面積S= c2 , 求sinC的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當a=﹣2時,求不等式f(x)<g(x)的解集;
(2)設a>﹣1,且當x∈(﹣ , )時,f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某批發(fā)市場對某種商品的日銷售量(單位:噸)進行統(tǒng)計,最近50天的統(tǒng)計結果如下:
若以上表中頻率作為概率,且每天的銷售量相互獨立.
(1)求5天中該種商品恰好有兩天的日銷售量為1.5噸的概率;
(2)已知每噸該商品的銷售利潤為2千元, 表示該種商品某兩天銷售利潤的和(單位:千元),求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知離散型隨機變量X的分布列如表:
X | ﹣1 | 0 | 1 | 2 |
P | a | b | c |
若E(X)=0,D(X)=1,則a,b的值分別為( )
A. ,
B. ,
C. ,
D. ,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為實數(shù),函數(shù).
(1)若是函數(shù)的一個極值點,求實數(shù)的取值;
(2)設,若,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=1處的切線方程為
l:y=3x+1,且當x=時,y=f(x)有極值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“莞馬”活動中的α機器人一度成為新聞熱點,為檢測其質(zhì)量,從一生產(chǎn)流水線上抽取20件該產(chǎn)品,其中合格產(chǎn)品有15件,不合格的產(chǎn)品有5件.
(1)現(xiàn)從這20件產(chǎn)品中任意抽取2件,記不合格的產(chǎn)品數(shù)為X,求X的分布列及數(shù)學期望;
(2)用頻率估計概率,現(xiàn)從流水線中任意抽取三個機器人,記ξ為合格機器人與不合格機器人的件數(shù)差的絕對值,求ξ的分布列及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com