【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù))).
(1)若是函數(shù)的極值點,求實數(shù)的值并討論的單調性;
(2)若,函數(shù)有兩個零點,,證明:.
【答案】(1);在單調遞減,在單調遞增;(2)詳見解析.
【解析】
(1)由得到,所以,分,兩種情況討論即可得到的單調性;
(2),當時,函數(shù)在上單調遞增,不存在兩個零點,當時,,,,不妨設,令,則,,,,欲證,只需證明,再構造函數(shù)證明即可.
(1),因為是函數(shù)的極值點,
所以,所以,所以.
當時,,,所以,
當時,,,所以,
所以在單調遞減,在單調遞增.
(2).
當時,函數(shù)在上單調遞增,不存在兩個零點,∴.
由題意知,,
∴,,,,
可得,
不妨設,令,則.
由,解得,,
∴.
欲證,只需證明,即證,
設,則.
設,則,∴單調遞增.
∴,即,∴在區(qū)間上單調遞增,
∴,即,原不等式得證.
科目:高中數(shù)學 來源: 題型:
【題目】已知過點的直線與拋物線交于不同的兩點,點,連接的直線與拋物線的另一交點分別為,如圖所示.
(Ⅰ)若,求直線的斜率;
(Ⅱ)試判斷直線的斜率是否為定值,如果是,請求出此定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,定義:以橢圓中心為圓心,長軸為直徑的圓叫做橢圓的“輔助圓”.過橢圓第四象限內一點M作x軸的垂線交其“輔助圓”于點N,當點N在點M的下方時,稱點N為點M的“下輔助點”.已知橢圓E:上的點的下輔助點為(1,﹣1).
(1)求橢圓E的方程;
(2)若△OMN的面積等于,求下輔助點N的坐標;
(3)已知直線l:x﹣my﹣t=0與橢圓E交于不同的A,B兩點,若橢圓E上存在點P,滿足,求直線l與坐標軸圍成的三角形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)若是單調函數(shù),則實數(shù)的取值范圍是_________;若存在實數(shù),使函數(shù)有三個零點,則實數(shù)的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線與橢圓有一個相同的焦點,過點且與軸不垂直的直線與拋物線交于,兩點,關于軸的對稱點為.
(1)求拋物線的方程;
(2)試問直線是否過定點?若是,求出該定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉變.近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月A,B兩種移動支付方式的使用情況,從全校所有的1000名學生中隨機抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學生的支付金額分布情況如下:
支付金額 支付方式 | 不大于2000元 | 大于2000元 |
僅使用A | 27人 | 3人 |
僅使用B | 24人 | 1人 |
(Ⅰ)估計該校學生中上個月A,B兩種支付方式都使用的人數(shù);
(Ⅱ)從樣本僅使用B的學生中隨機抽取1人,求該學生上個月支付金額大于2000元的概率;
(Ⅲ)已知上個月樣本學生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用B的學生中隨機抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結合(Ⅱ)的結果,能否認為樣本僅使用B的學生中本月支付金額大于2000元的人數(shù)有變化?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓C:(a>b>0)經過點(﹣2,0)和,橢圓C上三點A,M,B與原點O構成一個平行四邊形AMBO.
(1)求橢圓C的方程;
(2)若點B是橢圓C左頂點,求點M的坐標;
(3)若A,M,B,O四點共圓,求直線AB的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值.
(2),若不等式在上恒成立,求的最大值.
(3)是否存在實數(shù),使得函數(shù)在上的值域為?如果存在,請給出證明;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),給出以下四個命題:
①的圖象關于軸對稱;
②在上是減函數(shù);
③是周期函數(shù);
④在上恰有兩個零點.
其中真命題的序號是______.(請寫出所有真命題的序號)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com