不等式組
y≥0
y≤-|x|+2
的解集對(duì)應(yīng)的平面區(qū)域面積是
 
考點(diǎn):其他不等式的解法
專題:不等式的解法及應(yīng)用
分析:原不等式組等價(jià)為不等式組
x≥0
y≥0
y≤-x+2
x≤0
y≥0
y≤x+2
,作出線性規(guī)劃的圖形,即可求得答案.
解答: 解:原不等式組等價(jià)為不等式組
x≥0
y≥0
y≤-x+2
x≤0
y≥0
y≤x+2
,
作圖如下:

所以,不等式組
y≥0
y≤-|x|+2
的解集對(duì)應(yīng)的平面區(qū)域面積是S=
1
2
×4×2=4.
故答案為:4.
點(diǎn)評(píng):本題考查絕對(duì)值不等式的解法,著重考查線性規(guī)劃問題,分類討論與作圖是關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若α,β是關(guān)于x的一元二次方程x2+2(cosθ+1)x+cos2θ=0的兩根,且|α-β|≤2
2
,求θ的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

①一個(gè)命題的逆命題為真,它的否命題也一定為真;
②在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個(gè)角成等差數(shù)列”的充要條件;
x>1
y>2
x+y>3
xy>2
的充要條件;  
④“am2<bm2”是“a<b”的充分必要條件;
⑤△ABC中,“sinA<sinB”是“∠A<∠B”的充要條件;
以上說法中,判斷錯(cuò)誤的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨著人們經(jīng)濟(jì)收入的不斷增長,個(gè)人購買家庭轎車 已不再是一種時(shí)尚.車的使用費(fèi)用,尤其是隨著使  用年限的增多,所支出的費(fèi)用到底會(huì)增長多少,一直是購車一族非常關(guān)心的問題某汽車銷售公司作了一次抽樣調(diào)查,并統(tǒng)計(jì)得出某款車的使用年限x 與所支出的總費(fèi)用y(萬元)有如下的數(shù)據(jù)資料:
使用年限x23456
總費(fèi)用y2.23.85.56.57.0
若由資料,知y對(duì)x呈線性相關(guān)關(guān)系.試求:線性回歸方程
y
=
b
x+
a
的回歸直線.
b
=
 
 
xiyi-n
.
x
.
y
 
 
xi2-n
.
x
2
a
=
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1+sin2x,sinx-cosx),
b
=(1,sinx+cosx),函數(shù)f(x)=
a
b

(Ⅰ)求f(x)的最大值及相應(yīng)的x的值;
(Ⅱ)在△ABC中,a,b,c分別是三個(gè)內(nèi)角A,B,C所對(duì)邊,若f(
A
2
)=2,a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga
x+2
x-2
(a>0
,且a≠1).
(Ⅰ)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論;
(Ⅱ)當(dāng)0<a<1時(shí),判斷函數(shù)f(x)在區(qū)間(2,+∞)上的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x,x<0
a+2x,x≥0.
,若f[f(-1)]=2,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形ABC的三個(gè)頂點(diǎn)的坐標(biāo)為A(2,4),B(-1,1),C(1,-1),求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=-2|2|x|-1|+1和g(x)=x2-2|x|+m(m∈R)是定義在R上的兩個(gè)函數(shù),給出下列4 個(gè)命題:
①關(guān)于x的方程f(x)-k=0恰有四個(gè)不相等實(shí)數(shù)根的充要條件是k∈(-1,1);
②關(guān)于x的方程f(x)=g(x)恰有四個(gè)不相等實(shí)數(shù)根的充要條件是m∈[0,1];
③當(dāng)m=1時(shí),對(duì)?x1∈[-1,0],?x2∈[-1,0],f(x1)<g(x2)成立;
④若?x1∈[-1,1],?x2∈[-1,1],f(x1)<g(x2)成立,則m∈(-1,+∞).
其中正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案