17.某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取100名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如圖部分頻率分布直方圖,其中成績(jī)?cè)赱130,150]的稱(chēng)為“優(yōu)秀”,其它的稱(chēng)為“一般”,觀察圖形的信息,回答下列問(wèn)題:
(1)求分?jǐn)?shù)在[120,130)內(nèi)的人數(shù)及數(shù)學(xué)成績(jī)“優(yōu)秀”的人數(shù);
(2)用分層抽樣的方法在在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至多有1人在分?jǐn)?shù)段在分?jǐn)?shù)段[120,130)內(nèi)的概率.
(3)若統(tǒng)計(jì)了這100名學(xué)生的地理成績(jī)后得到如下表格:
數(shù)學(xué)成績(jī)“優(yōu)秀”數(shù)學(xué)成績(jī)“一般”總計(jì)
地理成績(jī)“優(yōu)秀”104050
地理成績(jī)“一般”203050
總計(jì)3070100
則能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下,認(rèn)為“數(shù)學(xué)成績(jī)是否優(yōu)秀與地理成績(jī)是否優(yōu)秀有關(guān)系”?
下面的臨界值表供參考:
 P(K2≥k) 0.15 0.10 0.05 0.025
 k 2.072 2.706 3.841 5.024
K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(b+d)}$.

分析 (1)求出頻率,然后求解分?jǐn)?shù)在[120,130)內(nèi)的人數(shù)及數(shù)學(xué)成績(jī)“優(yōu)秀”的人數(shù).
(2)求出[110,120)分?jǐn)?shù)段的人數(shù),[120,130)分?jǐn)?shù)段的人數(shù),在[110,120)分?jǐn)?shù)段內(nèi)抽取2人,并分別記為m,n;在[120,130)分?jǐn)?shù)段內(nèi)抽取4人,并分別記為a,b,c,d;設(shè)“從樣本中任取2人,至多有1人在分?jǐn)?shù)段[120,130)內(nèi)”為事件A,基本事件總數(shù),求出A的事件數(shù)目;然后求解概率.
(3)求出K2,即可判斷能否在犯錯(cuò)誤概率不超過(guò)0.05的前提下,認(rèn)為“數(shù)學(xué)成績(jī)是否優(yōu)秀與地理成績(jī)是否優(yōu)秀有關(guān)系”.

解答 解:(1)分?jǐn)?shù)在[120,130)內(nèi)的頻率為
1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3;
分?jǐn)?shù)在[130,150]內(nèi)的頻率為
0,.25+0.05=0.3;
所以分?jǐn)?shù)在[120,130)內(nèi)的人數(shù)及數(shù)學(xué)成績(jī)“優(yōu)秀”的人數(shù)均為100×0.3=30.
(2)依題意,[110,120)分?jǐn)?shù)段的人數(shù)為100×0.15=15(人),
[120,130)分?jǐn)?shù)段的人數(shù)為100×0.3=30(人);
∵用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個(gè)容量為6的樣本,
∴需在[110,120)分?jǐn)?shù)段內(nèi)抽取2人,并分別記為m,n;
在[120,130)分?jǐn)?shù)段內(nèi)抽取4人,并分別記為a,b,c,d;
設(shè)“從樣本中任取2人,至多有1人在分?jǐn)?shù)段[120,130)內(nèi)”為事件A,
則基本事件有(m,n),(m,a),…,(m,d),(n,a),…,
(n,d),(a,b),…,(c,d)共15種;
則事件A包含的基本事件有(m,n),(m,a),(m,b),(m,c),(m,d),
(n,a),(n,b),(n,c),(n,d)共9種;
∴P(A)=$\frac{9}{15}$=$\frac{3}{5}$.
(3)${K^2}=\frac{{100×{{({10×30-20×40})}^2}}}{30×70×50×50}≈4.762>3.841$,
所以能在犯錯(cuò)誤概率不超過(guò)0.05的前提下,認(rèn)為“數(shù)學(xué)成績(jī)是否優(yōu)秀與地理成績(jī)是否優(yōu)秀有關(guān)系”.

點(diǎn)評(píng) 本題考查獨(dú)立檢驗(yàn)以及頻率分布直方圖,古典概型的應(yīng)用,考查分析問(wèn)題解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知二面角α-l-β的平面角為θ,A,B∈l,AC?α,BD?β,AC⊥l,BD⊥l,若AB=AC=BD=1,CD=2,則θ=120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如表是某班(共30人)在一次考試中的數(shù)學(xué)和物理成績(jī)(單位:分)
 學(xué)號(hào)1 23 45 678 910 1112 1314 15
 數(shù)學(xué)成績(jī) 114 106 115 77 86 90 95 86 97 79 100 78 77 113 60
 物理成績(jī) 7249 5129 5749 62 2263 2942 2137 4621
 學(xué)號(hào) 16 1718192021222324252627282930
 數(shù)學(xué)成績(jī) 89 74829564875665436464856656 51
 物理成績(jī) 65 4533282928393445353534202939
將數(shù)學(xué)成績(jī)分為兩個(gè)層次:數(shù)學(xué)Ⅰ(大于等于80分)與數(shù)學(xué)Ⅱ(低于80分),物理也分為兩個(gè)層次:物理Ⅰ(大于等于59分)與物理Ⅱ(低于59分).
(1)根據(jù)這次考試的成績(jī)完成下面2×2列聯(lián)表,并運(yùn)用獨(dú)立性檢驗(yàn)的知識(shí)進(jìn)行探究,可否有95%的把握認(rèn)為“數(shù)學(xué)成績(jī)與物理成績(jī)有關(guān)”?
 物理Ⅰ物理Ⅱ合計(jì) 
 數(shù)學(xué)Ⅰ 4  
 數(shù)學(xué)Ⅱ  15 
 合計(jì)   30
(2)從該班這次考試成績(jī)中任取兩名同學(xué)的成績(jī),記ξ為數(shù)學(xué)與物理成績(jī)都達(dá)到Ⅰ層次的人數(shù),求ξ的分布列與數(shù)學(xué)期望.
可能用到的公式和參考數(shù)據(jù):K2=$\frac{(a+b+c+d)(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
獨(dú)立性檢驗(yàn)臨界值表(部分)
 P(K2≥k0 0.150 0.1000.050 0.0250.010
 k0 2.0722.706 3.8415.024 6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.2015年7月9日21時(shí)15分,臺(tái)風(fēng)“蓮花”在我國(guó)廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬(wàn)人緊急轉(zhuǎn)移安置,5.6萬(wàn)人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災(zāi),直接經(jīng)濟(jì)損失12.99億元,距離路率市222千米的梅州也受到了臺(tái)風(fēng)的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶(hù)居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成(0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出如圖頻率直方圖:
(1)試根據(jù)頻率分布直方圖估計(jì)小區(qū)平均每戶(hù)居民的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)小明向班級(jí)同學(xué)發(fā)出倡議,為該小區(qū)居民捐款,現(xiàn)從損失超過(guò)4000元的居民中隨機(jī)抽出2戶(hù)進(jìn)行捐款救援,設(shè)抽出損失超過(guò)8000元的居民為ξ戶(hù),求ξ的分布列和數(shù)學(xué)期望;
(3)臺(tái)風(fēng)后區(qū)委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶(hù)居民捐款情況圖,根據(jù)圖表格中所給數(shù)據(jù),分別求b,c,a+b,c+d,a+c,b+d,a+b+c+d的值,并說(shuō)明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
 經(jīng)濟(jì)損失不超過(guò)4000元經(jīng)濟(jì)損失超過(guò)4000元合計(jì)
捐款超過(guò)500元a=30b 
捐款不超過(guò)500元cd=6 
合計(jì)   
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:臨界值表參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知極坐標(biāo)的極點(diǎn)在平面直角坐標(biāo)的原點(diǎn)O處,極軸與x軸的正半軸重合,且長(zhǎng)度單位相同,若點(diǎn)P為曲線C:$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))上的動(dòng)點(diǎn),直線l的極坐標(biāo)方程為ρcos(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$m(m>2)
(1)將曲線C的參數(shù)方程化為普通方程,直線l的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若曲線C上有且只有一點(diǎn)P到直線l的距離為2,求實(shí)數(shù)m的值和點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.2015年10月29日夜里,全面放開(kāi)二胎的消息一公布,迅速成為人們熱議的熱點(diǎn),為此,某網(wǎng)站進(jìn)行了一次民意調(diào)查,參與調(diào)查的網(wǎng)民中,年齡分布情況如圖所示:
(1)若以頻率代替概率,從參與調(diào)查的網(wǎng)民中隨機(jī)選取1人進(jìn)行訪問(wèn),求其年齡恰好在[30,40)之間的概率;
(2)若從參與調(diào)查的網(wǎng)民中按照分層抽樣的方法選取100人,其中30歲以下計(jì)劃要二胎的有25人,年齡不低于30歲的計(jì)劃要二胎的有30人,請(qǐng)以30歲為分界線,以是否計(jì)劃要二胎的人數(shù)建立分類(lèi)變量.
①填寫(xiě)下列2×2列聯(lián)表:
計(jì)劃要二胎不計(jì)劃要二胎合計(jì)
30歲以下
不低于30歲
合計(jì)
②試分析是否有90%以上的把握認(rèn)為計(jì)劃要二胎與年齡有關(guān)?
P(K2≥k00.150.100.05
k02.0722.7063.841
K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)y=sin2x的圖象關(guān)于點(diǎn)($\frac{1}{2}$kπ,0),k∈Z對(duì)稱(chēng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列說(shuō)法正確的是(  )
A.“a>b”是“a2>b2”的充分不必要條件
B.命題“?x0∈R,x02+1<0”的否定是“?x0∈R,x02+1>0”
C.關(guān)于x的方程x2+(a+1)x+a-2=0的兩實(shí)根異號(hào)的充要條件是a<1
D.若f(x)是R上的偶函數(shù),則f(x+1)的圖象的對(duì)稱(chēng)軸是x=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.正方形ABCD所在平面外一點(diǎn)P,有PA=PB=PC=PD=AB,則二面角P-AB-C的余弦值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案