【題目】如圖,在多面體中,四邊形為矩形,,均為等邊三角形,,

)過作截面與線段交于點,使得平面,試確定點的位置,并予以證明;

)在()的條件下,求直線與平面所成角的正弦值.

【答案】(Ⅰ)為線段的中點,證明見解析(Ⅱ)

【解析】

)取中點,連結(jié),,可得,,,且.可得,從而,即面

)連結(jié),則的中點,連結(jié),當時,,所以中點.由(1)知,,兩兩垂直,分別以,所在直線為,軸建立空間直角坐標系,利用向量求解.

解:()取中點,連結(jié),,

是邊長為2的正三角形,,,

,,且

于是,從而

,

所以,而,所以面

)連結(jié),則的中點,連結(jié),當時,,所以中點.

由()知,兩兩垂直,分別以,所在直線為,,軸建立空間直角坐標系,則, , ,

,

設面的法向量為,由,取

的法向量是,

,

二面角是鈍角,二面角的余弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點A0,2),動點M到點A的距離比動點M到直線y=﹣1的距離大1,動點M的軌跡為曲線C

1)求曲線C的方程;

2Q為直線y=﹣1上的動點,過Q做曲線C的切線,切點分別為D、E,求△QDE的面積S的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,過點的直線與橢圓交于兩點,延長交橢圓于點,的周長為8.

(1)求的離心率及方程;

(2)試問:是否存在定點,使得為定值?若存在,求;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某醫(yī)科大學實習小組為研究實習地晝夜溫差與患感冒人數(shù)之間的關系,分別到當?shù)貧庀蟛块T和某醫(yī)院抄錄了1月份至3月份每月5日、20日的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:

日期

15

120

25

220

35

320

晝夜溫差

10

11

13

12

8

6

就診人數(shù)(人)

22

25

29

26

16

12

該小組確定的研究方案是:先從這六組數(shù)據(jù)中隨機選取4組數(shù)據(jù)求線性回歸方程,再用剩余的2組數(shù)據(jù)進行檢驗.

1)求剩余的2組數(shù)據(jù)都是20日的概率;

2)若選取的是120日,25日,220日,35日四組數(shù)據(jù).

①請根據(jù)這四組數(shù)據(jù),求出關于的線性回歸方程用分數(shù)表示);

②若某日的晝夜溫差為,預測當日就診人數(shù)約為多少人?

附參考公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),gx)=bx1),其中a≠0,b≠0

1)若ab,討論Fx)=fx)﹣gx)的單調(diào)區(qū)間;

2)已知函數(shù)fx)的曲線與函數(shù)gx)的曲線有兩個交點,設兩個交點的橫坐標分別為x1,x2,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從2011年到2018年參加“北約”,“華約”考試而獲得加分的學生(每位學生只能參加“北約”,“華約”一種考試)人數(shù)可以通過以下表格反映出來.(為了方便計算,將2011年編號為1,2012年編號為2,依此類推……

年份x

1

2

3

4

5

6

7

8

人數(shù)y

2

3

4

4

7

7

6

6

1)據(jù)悉,該校2018年獲得加分的6位同學中,有1位獲得加20分,2位獲得加15分,3位獲得加10分,從該6位同學中任取兩位,記該兩位同學獲得的加分之和為X,求X的分布列及期望.

2)根據(jù)最近五年的數(shù)據(jù),利用最小二乘法求出yx之間的線性回歸方程,并用以預測該校2019年參加“北約”,“華約”考試而獲得加分的學生人數(shù).(結(jié)果要求四舍五入至個位)

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為自然對數(shù)的底數(shù).

1)求證:當時,;

2)若函數(shù)有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,其中.對一切恒成立,則①;②;③既不是奇函數(shù)也不是偶函數(shù);④的單調(diào)遞增區(qū)間是;⑤存在經(jīng)過點的直線與函數(shù)的圖像不相交.以上結(jié)論正確的是________________.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐PABCD中平面PAD⊥平面ABCD,ABCD,ABAD,MAD中點,PAPD,ADAB2CD2

1)求證:平面PMB⊥平面PAC;

2)求二面角APCD的余弦值.

查看答案和解析>>

同步練習冊答案