已知圓C:(x-2)2+(y-1)2=4的周長(zhǎng)被雙曲線E:
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線平分,則雙曲線E的離心率為( 。
A、
2
B、
3
C、
5
2
D、2
5
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:求出圓的圓心坐標(biāo),求出雙曲線的漸近線方程,由題意可得,雙曲線的一條漸近線通過(guò)圓心,即可得到a,b的關(guān)系,再由a,b,c和離心率公式,計(jì)算即可得到.
解答: 解:圓C:(x-2)2+(y-1)2=4的圓心為(2,1),
根據(jù)題意可知,雙曲線的一條漸近線通過(guò)圓心,
即(2,1)在直線y=
b
a
x上,即a=2b,
此時(shí)c=
a2+
a2
4
=
5
2
a,則e=
5
2

故選C.
點(diǎn)評(píng):本題考查雙曲線的方程和性質(zhì),考查圓的方程的運(yùn)用,考查離心率的求法,抓住漸近線經(jīng)過(guò)圓心是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某程序框圖如圖所示,該程序運(yùn)行后輸出的k的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

中心在原點(diǎn),焦點(diǎn)為(1,0)和(-1,0)且長(zhǎng)軸長(zhǎng)為4的橢圓的參數(shù)方程為(  )
A、
x=2cosθ
y=1sinθ
(θ為參數(shù))
B、
x=1cosθ
y=2sinθ
(θ為參數(shù))
C、
x=2cosθ
y=
3
sinθ
(θ為參數(shù))
D、
x=
3
cosθ
y=2sinθ
(θ為參數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}滿足a1=2,an+1=
an
3an+1

(1)設(shè)bn=
1
an
,問(wèn):{bn}是否為等差數(shù)列?若是,請(qǐng)說(shuō)明理由并求出通項(xiàng)bn
(2)設(shè)cn=anan+1,求{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△A BC中,a,b,c分別為三內(nèi)角A,B,C所對(duì)的邊,且
2
b
a-
2
b
=
sin2B
sinA-sin2B
,則角B=(  )
A、
π
6
B、
π
4
C、
π
3
D、
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=6,S5=40
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{
1
anan+1
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
x2(sinx+4)+2x+4
x2+1
在區(qū)間[-a,a](a>0)上有最大值M和最小值m,則M+m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)α、β、γ是三個(gè)互不重合的平面,m,n是直線,給出下列命題:
①α⊥β,β⊥γ,則α⊥γ;               ②若α∥β,m?β,m∥α,則m∥β;
③若m,n在α內(nèi)的射影互相垂直,則m⊥n;④a,b是異面直線,a?α,b?β,a⊥β,b⊥α,則α⊥β.
其中正確命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線C:
x2
4
-y2=1的離心率是
 
;漸近線方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案