【題目】已知拋物線與直線只有一個公共點,點是拋物線上的動點.

1)求拋物線的方程;

2)①若,求證:直線過定點;

②若是拋物線上與原點不重合的定點,且,求證:直線的斜率為定值,并求出該定值.

【答案】12)①證明見解析②證明見解析,

【解析】

1)聯(lián)立拋物線與直線方程,再根據(jù)二者只有一個交點可得,即可求解;

2)①設(shè),,由直線斜率公式代入可得,由直線的斜率公式可得,進而將代入直線的方程,化簡后即可求解;②設(shè),,利用直線斜率公式代入中化簡可得,,再根據(jù)直線斜率公式求解即可.

解:(1聯(lián)立得,

因為拋物線與直線只有一個公共點,

所以,即,

所以拋物線的方程為.

2)①證明:設(shè),,則,

所以,又,

所以直線的方程為,

,

,所以直線過定點.

②證明:設(shè),,

,

,

所以,則,

所以直線的斜率為,

因為為定點,

所以直線的斜率為定值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某植物園內(nèi)有一塊圓形區(qū)域,在其內(nèi)接四邊形內(nèi)種植了兩種花卉,其中區(qū)域內(nèi)種植蘭花,區(qū)域內(nèi)種植丁香花,對角線BD是一條觀賞小道.測量可知邊界,,

1)求觀賞小道BD的長及種植區(qū)域的面積;

2)因地理條件限制,種植丁香花的邊界BC,CD不能變更,而邊界AB,AD可以調(diào)整,使得種植蘭花的面積有所增加,請在BAD上設(shè)計一點P,使得種植區(qū)域改造后的新區(qū)域(四邊形)的面積最大,并求出這個面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體ABCDHKLE中,底面ABCD是邊長為3的正方形,對角線ACBD相交于點O,點F在線段AH上,且,BE與底面ABCD所成角為

1)求證:ACBE;

2)求二面角FBED的余弦值;

3)設(shè)點M在線段BD上,且AM//平面BEF,求DM的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓:的左右焦點分別為,,左頂點為,點在橢圓上,且的面積為.

(1)求橢圓的方程;

(2)過原點且與軸不重合的直線交橢圓兩點,直線分別與軸交于點,.求證:以為直徑的圓恒過交點,并求出面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,過點的直線交拋物線兩點.

1)當時,求直線的方程;

2)若過點且垂直于直線的直線與拋物線交于、兩點,記的面積分別為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為邊長為2的菱形,,,的中點,,

(Ⅰ)求證:平面;

(Ⅱ)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校在一天上午的5節(jié)課中,安排語文、數(shù)學、英語三門文化課和音樂、美術(shù)兩門藝術(shù)課各1節(jié),且相鄰兩節(jié)文化課之間最多安排1節(jié)藝術(shù)課,則不同的排課方法共有________種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,討論函數(shù)的單調(diào)性;

(Ⅱ)若方程沒有實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況,下列敘述中錯誤的是(

A.消耗1升汽油乙車最多可行駛5千米.

B.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多.

C.甲車以80千米/小時的速度行駛1小時,消耗10升汽油.

D.某城市機動車最高限速80千米/小時,相同條件下,在該市用丙車比用乙車更省油.

查看答案和解析>>

同步練習冊答案