【題目】如圖所示的幾何體中,四邊形是菱形,是矩形,平面,,,的中點.

(Ⅰ)求證:平面;

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)設為線段上的動點,二面角的平面角的大小為30°,求線段的長.

【答案】(Ⅰ)證明見解析:(Ⅱ);(Ⅲ)

【解析】

(Ⅰ)由已知可得四邊形為平行四邊形,連,與交于,則點的中點,連,結合已知可證,即可證明結論;

(Ⅱ)由已知可得,以為坐標原點建立空間直角坐標系,確定的坐標,求出平面一個法向量坐標,按照空間向量線面角公式即可求解;

(Ⅲ)設,求出平面一個法向量的坐標,取平面的法向量為,按照空間向量的面面角公式,即可求出結論.

(Ⅰ)四邊形是菱形,是矩形,

,

四邊形為平行四邊形,連,與交于,

則點的中點,連,的中點,

平面,平面,

平面

(Ⅱ)四邊形是菱形,的中點,

,又平面,

為坐標原點,所在的直線分別為軸,

建立空間直角坐標系,,

,

設平面的法向量為,則
,即,

,則,

平面的一個法向量為,

設直線與平面所成角為,

,

直線與平面所成角的正弦值為.

(Ⅲ)設,

,設平面的法向量為,

,即,

,則,

所以平面的一個法向量為,

是平面的一個法向量,

所以,

解得(舍去),

所以線段的長為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在①,②,③這三個條件中任選一個,補充在下面的問題中,并解決該問題.

已知的內角,,的對邊分別為,,______________,,,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙十一購物狂歡節(jié),是指每年1111日的網(wǎng)絡促銷日,源于淘寶商城(天貓)20091111日舉辦的網(wǎng)絡促銷活動,已成為中國電子商務行業(yè)的年度盛事.某生產商為了了解其生產的產品在不同電商平臺的銷售情況,統(tǒng)計了兩個電商平臺各十個網(wǎng)絡銷售店鋪的銷售數(shù)據(jù):

電商平臺

64

71

81

70

79

69

82

73

75

60

電商平臺

60

80

97

77

96

87

76

83

94

96

1)作出兩個電商平臺銷售數(shù)據(jù)的莖葉圖,根據(jù)莖葉圖判斷哪個電商平臺的銷售更好,并說明理由;

2)填寫下面關于店鋪個數(shù)的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認為銷售量與電商平臺有關;

銷售量

銷售量

總計

電商平臺

電商平臺

總計

3)生產商要從這20個網(wǎng)絡銷售店鋪銷售量前五名的店鋪中,隨機抽取三個店鋪進行銷售返利,則其中恰好有兩個店鋪的銷售量在95以上的概率是多少?

附:,.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在等腰梯形中,,,,點的中點.將沿折起,使點到達的位置,得到如圖所示的四棱錐,點為棱的中點.

(1)求證:平面

(2)若平面平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有甲、乙兩個盒子,甲盒子里有個紅球,乙盒子里有個紅球和個黑球,現(xiàn)從乙盒子里隨機取出個球放入甲盒子后,再從甲盒子里隨機取一球,記取到的紅球個數(shù)為個,則隨著的增加,下列說法正確的是(

A.增加,增加B.增加,減小

C.減小,增加D.減小,減小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形ABCDBDEF均為菱形,,且

求證:平面BDEF;

求直線AD與平面ABF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】開學后,某學校食堂為了減少師生就餐排隊時間,特推出即點即取的米飯?zhí)撞秃兔媸程撞蛢煞N,已知小明同學每天中午都會在食堂提供的米飯?zhí)撞秃兔媸程撞椭羞x擇一種,米飯?zhí)撞偷膬r格是每份15元,面食套餐的價格是每份10元,如果小明當天選擇了某種套餐,她第二天會有的可能性換另一種類型的套餐,假如第1天小明選擇了米飯?zhí)撞停?/span>n天選擇米飯?zhí)撞偷母怕?/span>,給出以下論述:①小明同學第二天一定選擇面食套餐;②;③;④前n天小明同學午餐花費的總費用數(shù)學期望為.其中正確的是( )

A.②④B.①②③C.③④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左、右焦點分別是、,離心率,過點的直線交橢圓兩點, 的周長為16.

(1)求橢圓的方程;

(2)已知為原點,圓 )與橢圓交于兩點,點為橢圓上一動點,若直線、軸分別交于兩點,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點,,,是橢圓上任意三點,,關于原點對稱且滿足.

(1)求橢圓的方程.

(2)若斜率為的直線與圓:相切,與橢圓相交于不同的兩點、,求時,求的取值范圍.

查看答案和解析>>

同步練習冊答案