設(shè)z=x+y,其中實(shí)數(shù)x,y滿足
x+2y≥o
x-y≤o
0≤y≤k
若z的最大值為12,則z的最小值為( 。
A、-3B、3C、-6D、6
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:計(jì)算題,作圖題,不等式的解法及應(yīng)用
分析:由題意作出其平面區(qū)域,直線y=k,y=-x+12,y=x三線相交于一點(diǎn),聯(lián)立y=-x+12,y=x解出交點(diǎn)坐標(biāo),代入求k.
解答: 解:由題意作出其平面區(qū)域:

則直線y=k,y=-x+12,y=x三線相交于一點(diǎn),
由y=-x+12,y=x聯(lián)立可解得,
x=6,y=6,
則k=6.
故選D.
點(diǎn)評(píng):本題考查了簡(jiǎn)單線性規(guī)劃,作圖要細(xì)致認(rèn)真,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線
x
4
+
y
3
=1橢圓
x2
16
+
y2
9
=1相交于A,B兩點(diǎn),該橢圓上點(diǎn)P,使得△PAB面積等于3,這樣的點(diǎn)P共有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=
n2+n
2
,n∈N*
,
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)bn=2an+an,求數(shù)列{ bn}的前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
1
3
ax3+
1
2
ax2-a+1的圖象經(jīng)過(guò)四個(gè)象限,則實(shí)數(shù)a的取值范圍是( 。
A、
5
6
<a<1
B、a<1或a>
6
5
C、a>-
5
6
或a<-1
D、1<a<
6
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=
n(1+an)
2
(n=1,2,3,…)
(1)求a1的值;
(2)求證:(n-2)an+1=(n-1)an-1(n≥2);
(3)判斷數(shù)列{an}是否為等差數(shù)列,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以直線x-y=0與x-3y+2=0的交點(diǎn)A,及B(0,4),C(3,0)組成三角形ABC,D為BC邊上的中點(diǎn),求:
(1)AD所在直線方程
(2)三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知異面直線a,b所成的角為50°,P為空間一定點(diǎn),過(guò)點(diǎn)P且與a,b所成的角相等的直線有4條,則過(guò)點(diǎn)P的直線與直線a所成角的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x+1)=x2+2x-5,則f(x)的解析式為( 。
A、f(x)=x2
B、f(x)=x2-6
C、f(x)=x2+6
D、f(x)=x2+6x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題P:|x-m|>1,命題Q:
2-x
1+x
≥0,若命題P是命題Q的必要非充分條件,則m的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案