若2x=5,則x=
 
考點:指數(shù)式與對數(shù)式的互化
專題:函數(shù)的性質(zhì)及應用
分析:把指數(shù)式化為對數(shù)式即可.
解答: 解:∵2x=5,
∴x=log25.
故答案為:log25.
點評:本題考查了指數(shù)式化為對數(shù)式,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,兩個焦點分別為F1(-1,0),F(xiàn)2(1,0).
(1)求橢圓C的方程;
(2)過點F2(1,0)的直線l交橢圓C于M,N兩點,設點N關于x軸的對稱點為Q(M、Q不重合),求證:直線MQ過x軸上一個定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,點M、N分別在邊AB、AC上,且
AM
=2
MB
,
AN
=
3
5
AC
,線段CM與BN相交于點P,且
AB
=
a
,
AC
=
b
,則
AP
a
b
表示為( 。
A、
AP
=
4
9
a
+
1
3
b
B、
AP
=
4
9
a
+
2
3
b
C、
AP
=
2
9
a
+
4
3
b
D、
AP
=
4
7
a
+
3
7
b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過原點的直線交雙曲線xy=
2
于P、Q兩點,現(xiàn)將坐標平面沿x軸折成直二面角,則折后線段PQ的長度的最小值等于(  )
A、4
B、2
2
C、2
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:ak-1+ak+1≥2ak(k=2,3,…).
(Ⅰ)若a1=2,a2=5,a4=11,求a3的值;
(Ⅱ)若a1=a2014=a,證明:ak+1-ak
ak+1-a
k
且ak≤a,(k=1,2,…,2014).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為R,且滿足f(x+2)=-f(x).若f(x)為奇函數(shù),且當0≤x≤1時,f(x)=
1
2
x,求使f(x)=-
1
2
在[0,2 014]上的所有x的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某射擊比賽,開始時在距目標100米處射擊,如果命中記3分,且停止射擊;若第一次射擊未命中,可以進行第二次射擊,但目標已在150米處,這時命中記2分,且停止射擊;若第二次仍未命中還可以進行第三次射擊,但此時目標已在200米處,若第三次命中則記1分,并停止射擊;若三次都未命中,則記0分.已知射手的命中率P與目標距離x(米)的關系為P(x)=
k
x2
,且在100米處擊中目標的概率為
1
2
,假設各次射擊相互獨立.
(Ⅰ)求這名射手在射擊比賽中命中目標的概率;
(Ⅱ)求這名射手在比賽中得分ξ的分布列與數(shù)學期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

空間幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A、4+
2
3
3
B、4π+2
3
C、2π+
2
3
π
3
D、2π+
3
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y,z∈R+,且3x=4y=6z
(1)求證:
1
z
-
1
x
=
1
2y
;
(2)比較3x,4y,6z的大。

查看答案和解析>>

同步練習冊答案