【題目】在某項娛樂活動的海選過程中評分人員需對同批次的選手進(jìn)行考核并評分,并將其得分作為該選手的成績,成績大于等于分的選手定為合格選手,直接參加第二輪比賽,大于等于分的選手將直接參加競賽選拔賽.已知成績合格的名參賽選手成績的頻率分布直方圖如圖所示,其中的頻率構(gòu)成等比數(shù)列.
(1)求的值;
(2)估計這名參賽選手的平均成績;
(3)根據(jù)已有的經(jīng)驗,參加競賽選拔賽的選手能夠進(jìn)入正式競賽比賽的概率為,假設(shè)每名選手能否通過競賽選拔賽相互獨立,現(xiàn)有名選手進(jìn)入競賽選拔賽,記這名選手在競賽選拔賽中通過的人數(shù)為隨機變量,求的分布列和數(shù)學(xué)期望.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是邊長為1的正方形,垂直于底面,.
(1)求證;
(2)求平面與平面所成二面角的大小;
(3)設(shè)棱的中點為,求異面直線與所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B是單位圓O上的兩點(O為圓心),∠AOB=120°,點C是線段AB上不與A、B重合的動點.MN是圓O的一條直徑,則的取值范圍是( )
A. [,0) B. [,0] C. [,1) D. [,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了迎接2000年的到來,某地組織了一次乒乓球迎春幸運賽.首先,通過身份號抽選出2000名選手,編號為1,2,…,2000,他們當(dāng)中任兩人都可以組成一對雙打選手,每對選手的編號之和稱為他們的“和號”.規(guī)定:“和號”相同的兩對選手方有資格進(jìn)行幸運雙打賽.比賽開始前,組委會首先從2000個編號中隨機抽出65名幸運選手,然后找出“和號”相同的兩對選手進(jìn)行幸運雙打賽(凡同一“和號”的選手分在同一區(qū)進(jìn)行單循環(huán)).求證:無論怎樣抽選,總有選手進(jìn)行幸運賽.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩班各派三名同學(xué)參加知識競賽,每人回答一個問題,答對得10分,答錯得0分,假設(shè)甲班三名同學(xué)答對的概率都是,乙班三名同學(xué)答對的概率分別是,,,且這六名同學(xué)答題正確與否相互之間沒有影響.
(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;
(2)用表示甲班總得分,求隨機變量的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中點.
(1)求證:AE⊥B1C;
(2)求異面直線AE與A1C所成的角的大小;
(3)若G為C1C中點,求二面角C-AG-E的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱ABCD—A1B1C1D1中,AB=BD=1,,AA1=BC=2,AD∥BC.
(1)證明:BD⊥平面ABB1A1.
(2)比較四棱錐D—ABB1A1與四棱錐D—A1B1C1D1的體積的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寫出下面平面幾何中的常見結(jié)論在立體幾何中也成立的所有序號______.
①四邊形內(nèi)角和為;
②垂直的兩條直線必相交;
③垂直同一條直線的兩條直線平行;
④平行同一條直線的兩條直線平行;
⑤四邊相等的四邊形,其對角線垂直;
⑥到三角形三邊距離相等的點是這個三角形的內(nèi)心;
⑦到一個角的兩邊距離相等的點必在這個角的角平分線上;
⑧在平面幾何中有“一組平行線(至少3條)被兩條直線所截得的對應(yīng)線段成比例”的結(jié)論,則這一結(jié)論可推廣到立體幾何中“一組平行平面(至少3個)被兩條直線所截得的對應(yīng)線段也成比例.”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究機構(gòu)對某校高二文科學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計分析,得下表數(shù)據(jù).
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(3)試根據(jù)(2)中求出的線性回歸方程,預(yù)測記憶力為14的學(xué)生的判斷力.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com