分析 設(shè)c邊所對(duì)的角為C,運(yùn)用三角形的面積公式和放縮法,以及勾股定理,即可得到所求最大值.
解答 解:設(shè)c邊所對(duì)的角為C,
則△ABC的面積S=$\frac{1}{2}$absinC≤$\frac{1}{2}$•5•8•sin90°=20,
當(dāng)且僅當(dāng)a=5,b=8,c=$\sqrt{25+64}$=$\sqrt{89}$取得等號(hào).
但由于8≤c≤9,等號(hào)不成立,
又a的最大值為5,c的最大值為9,可得b=$\sqrt{81-25}$=2$\sqrt{14}$,
則△ABC的面積的最大值為$\frac{1}{2}$ab=$\frac{1}{2}$×5×2$\sqrt{14}$=5$\sqrt{14}$.
故答案為:5$\sqrt{14}$.
點(diǎn)評(píng) 本題考查三角形的面積的最值求法,注意運(yùn)用放縮法,以及勾股定理,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1} | B. | {1,2} | C. | {2,3} | D. | {1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com