10.設(shè)數(shù)列{an}滿足a1=2,an+1=2an-n+1,n∈N*
(1)求數(shù)列{an-n}的通項公式;
(2)若數(shù)列bn=$\frac{1}{{n({a_n}-{2^{n-1}}+2)}}$,求數(shù)列{bn}的前n項和Sn

分析 (1)由an+1=2an-n+1,n∈N*,變形為an+1-(n+1)=2(an-n),利用等比數(shù)列的通項公式即可得出.
(2)由(1)可得:an-2n-1=n.bn=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,利用“裂項求和”方法即可得出.

解答 解:(1)∵an+1=2an-n+1,n∈N*,∴an+1-(n+1)=2(an-n),
∴{an-n}是等比數(shù)列,首項為1,公比為2,
∴an-n=2n-1
(2)由(1)可得:an-2n-1=n.
∴bn=$\frac{1}{{n({a_n}-{2^{n-1}}+2)}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,
∴數(shù)列{bn}的前n項和Sn=$\frac{1}{2}[(1-\frac{1}{3})$+$(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}$$(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$
=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$.

點評 本題考查了等比數(shù)列的通項公式、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知等比數(shù)列{an}中,a3,a15是方程x2-6x+1=0的兩根,則a7a8a9a10a11等于( 。
A.-1B.1C.-15D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,四棱錐P-ABCD中,∠ABC=∠BCD=90°,AB=2,CD=CB=CP=1.點P在底面上的射影為線段BD的中點M.
(Ⅰ)若E為棱PB的中點,求證:CE∥平面PAD;
(Ⅱ)求二面角A-PB-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知雙曲線C的離心率為$\frac{5}{2}$,左、右焦點為F1,F(xiàn)2,點A在C上,若|F1A|=2|F2A|,則cos∠AF2F1=$\frac{13}{20}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列各式中不能化簡為$\overrightarrow{AD}$的是( 。
A.$\overrightarrow{AB}$+$\overrightarrow{CD}$+$\overrightarrow{BC}$B.$\overrightarrow{AD}$+$\overrightarrow{EB}$+$\overrightarrow{BC}$+$\overrightarrow{CE}$C.$\overrightarrow{MB}$-$\overrightarrow{MA}$+$\overrightarrow{BD}$D.$\overrightarrow{CB}$+$\overrightarrow{AD}$-$\overrightarrow{BC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2sin(ωx+φ),(ω>0,0<φ<π)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為$\frac{π}{2}$.
(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{3}$個單位后,再將得到的圖象上各點的橫坐標(biāo)伸長到原來的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求出g(x)的對稱中心并畫出g(x)在[0,4π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.食品安全是關(guān)乎到人民群眾生命的大事.某市質(zhì)檢部門為了解該市甲、乙兩個食品廠生產(chǎn)食品的質(zhì)量,從兩廠生產(chǎn)的食品中分別隨機抽取各10件樣品,測量產(chǎn)品中某種元素的含量(單位:毫克).如圖是測量數(shù)據(jù)的莖葉圖:

規(guī)定:當(dāng)食品中的此種元素含量不小于18毫克時,該食品為優(yōu)等品.
(Ⅰ)試用上述樣本數(shù)據(jù)估計甲、乙兩廠生產(chǎn)的優(yōu)等品率;
(Ⅱ)從乙廠抽出的上述10件樣品中,隨機抽取3件,求抽到的3件樣品中優(yōu)等品數(shù)ξ的分布列及其數(shù)學(xué)期望E(ξ);
(Ⅲ)從甲廠的10件樣品中有放回的隨機抽取3件,也從乙廠的10件樣品中有放回的隨機抽取3件,求抽到的優(yōu)等品數(shù)甲廠恰比乙廠多2件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給出下列命題:
①設(shè)a,b為非零實數(shù),則“a<b”是“$\frac{1}{a}>\frac{1}$”的充分不必要條件;
②在△ABC中,若A>B,則sinA>sinB;
③命題“?x∈R,sinx<1”的否定為“?x0∈R,sinx0>1”;
④命題“若x≥2且y≥3,則x+y≥5”的逆否命題為“x+y<5,則x<2且y<3”.
其中真命題的個數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列計算正確的是( 。
A.(a25=a7B.a2•a4=a6C.3a2b-3ab2=0D.($\frac{a}{2}$)2=$\frac{a^2}{2}$

查看答案和解析>>

同步練習(xí)冊答案