(本小題滿分12分)
橢圓過(guò)點(diǎn),其左、右焦點(diǎn)分別為,離心率,是直線上的兩個(gè)動(dòng)點(diǎn),且
(1)求橢圓的方程; (2)求的最小值;
(3)以為直徑的圓是否過(guò)定點(diǎn)?請(qǐng)證明你的結(jié)論.
解:(1),且過(guò)點(diǎn),
 解得 橢圓方程為  .…………4分
設(shè)點(diǎn),
,  又,
的最小值為.……………………… 7分
圓心的坐標(biāo)為,半徑.
的方程為,     
整理得:.  …………10分
,,得,.
過(guò)定點(diǎn).………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓=1與橢圓=l(l>0)有 (    )
A.相等的焦距B.相同的離心率C.相同的準(zhǔn)線D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分).
如圖,已知某橢圓的焦點(diǎn)是F1(-4,0)、F2(4,0),過(guò)點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同的兩點(diǎn)A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.

(1)求該弦橢圓的方程;
(2)求弦AC中點(diǎn)的橫坐標(biāo);
(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若橢圓C1=1(0<b<2)的離心率等于,拋物線C2x2=2py(p>0)的焦點(diǎn)在橢圓C1的頂點(diǎn)上.
(Ⅰ)求拋物線C2的方程;
(Ⅱ)若過(guò)M(-1,0)的直線l與拋物線C2交于E、F兩點(diǎn),又過(guò)E、F作拋物線C2的切線l1l2,當(dāng)l1l2時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分15分)已知橢圓的左焦點(diǎn)是長(zhǎng)軸的一個(gè)四等分點(diǎn),點(diǎn)A、B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且不與y軸垂直的直線交橢圓于C、D兩點(diǎn),記直線AD、BC的斜率分別為
(1)當(dāng)點(diǎn)D到兩焦點(diǎn)的距離之和為4,直線軸時(shí),求的值;
(2)求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若點(diǎn)(x,y)在橢圓上,則的最小值為(  )
A.1 B.-1C.-D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓x2+(m+3)y2m(m>0)的離心率e,求m的值及橢圓的長(zhǎng)軸和短軸的長(zhǎng)及頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓上一焦點(diǎn)與短軸兩端點(diǎn)形成的三角形的面積為1,則  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,點(diǎn)B在橢圓上,且BF⊥x軸,直線AB交y軸于點(diǎn)P.若=2,則橢圓的離心率是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案