6.設(shè)$f(x)=\left\{\begin{array}{l}x,x∈({-∞,t})\\{x^3},x∈[{t,+∞}).\end{array}\right.$若f(3)=27,則t的取值范圍為(-∞,3].

分析 由x<t時,f(x)=x;當(dāng)x≥t時,f(x)=x3,f(3)=27=33,得到t≤3.

解答 解:∵$f(x)=\left\{\begin{array}{l}x,x∈({-∞,t})\\{x^3},x∈[{t,+∞}).\end{array}\right.$
∴x<t時,f(x)=x;當(dāng)x≥t時,f(x)=x3,
∵f(3)=27=33,
∴t≤3.
故答案為:(-∞,3].

點評 本題考查實數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在北緯60°的緯度圈上,有甲、乙兩地,兩地間緯度圈上的弧長等于$\frac{πR}{4}$(R為地球半徑),則這兩地的球面距離是R$arccos\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.冪函數(shù)f(x)的圖象經(jīng)過點$({2,\frac{1}{8}})$,則函數(shù)f(x)的解析式為f(x)=x-3(x≠0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求分別滿足下列條件的直線方程,并化為一般式
(1)經(jīng)過點(-1,3),且斜率為-3;
(2)經(jīng)過兩點A(0,4)和B(4,0);
(3)經(jīng)過點(2,-4)且與直線3x-4y+5=0平行;
(4)經(jīng)過點(1,2),且與直線x-y+5=0垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x)=sinx+cos$\frac{π}{4}$,則$f'(\frac{π}{4})$=$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.方程log3x+x-3=0的解所在區(qū)間是(k,k+1)(k∈Z),則k=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-ax+3\;\;\;\;\;\;x<2\\-6+{2^x}\;\;\;\;\;\;\;\;\;\;x≥2\end{array}\right.$的值域為[-2,+∞),則實數(shù)a的取值范圍為[-2$\sqrt{5}$,$\frac{9}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在平面直角坐標(biāo)系中,若兩點P、Q滿足條件:①P、Q都在函數(shù)y=f(x)的圖象上;②P、Q兩點關(guān)于直線y=x對稱,則稱點對{P,Q}是函數(shù)y=f(x)的一對“和諧點對”(注:點對{P,Q}與{Q,P}看做同一對“和諧點對”).函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+3x+2(x≤0)}\\{lo{g}_{2}x(x>0)}\end{array}\right.$,則此函數(shù)的“和諧點對”有2對.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某制造商制造并出售球形瓶裝的某種飲料.瓶子的制造成本是0.8πr2分,其中r是瓶子的半徑,單位是cm.已知每出售1ml的飲料,制造商可獲利0.2分,且制造商能制做的瓶子的最大半徑為6cm.
問題:瓶子半徑多大時,能使每瓶飲料的利潤最大?瓶子半徑多大時,每瓶飲料的利潤最。$({V_球}=\frac{4}{3}π{r^3})$.

查看答案和解析>>

同步練習(xí)冊答案