【題目】如圖,在三棱錐中,N為CD的中點(diǎn),M是AC上一點(diǎn).
(1)若M為AC的中點(diǎn),求證:AD//平面BMN;
(2)若,平面平面BCD,,求直線AC與平面BMN所成的角的余弦值。
【答案】(1)詳見解析(2)
【解析】
(1)由,即可證明出AD//平面BMN;
(2)向量法,建立空間直角坐標(biāo)系,求出以及面BMN的法相量,利用直線AC與平面BMN所成的角為,則即可求出AC與平面BMN所成的角的正弦值,進(jìn)而求出余弦值。
(1)證明:如圖,在中,因為M,N分別為棱AC,CD的中點(diǎn),連接MN,
所以,又平面BMN,平面BMN,
所以平面BMN
(2)解:取BD的中點(diǎn)O,連接AO,因為,所以,又因為平面平面BCD,平面平面BCD=BD,,平面ABO,
所以平面BCD,所以.
又,平面ABO
所以平面ABO,
平面ABO,所以
連接ON,所以,所以,
如圖建系,
設(shè),則,
因為,所以,
所以,則
所以,則
設(shè)平面BMN的一個法向量為,
則,即
令,則
設(shè)直線AC與平面BMN所成的角為,
則
又,所以,
所以直線AC與平面BMN所成的角的余弦值為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測評(總分100分),在成績統(tǒng)計分析中,抽取12名學(xué)生的成績以莖葉圖形式表示如圖,學(xué)校規(guī)定測試成績低于87分的為“未達(dá)標(biāo)”,分?jǐn)?shù)不低于87分的為“達(dá)標(biāo)”.
(1)求這組數(shù)據(jù)的眾數(shù)和平均數(shù);
(2)在這12名學(xué)生中從測試成績介于80~90之間的學(xué)生中任選2人,求至少有1人“達(dá)標(biāo)”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點(diǎn)與拋物線的焦點(diǎn)重合,且此拋物線的準(zhǔn)線被橢圓截得的弦長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線交橢圓于、兩點(diǎn),線段的中點(diǎn)為,直線是線段的垂直平分線,試問直線是否過定點(diǎn)?若是,請求出該定點(diǎn)的坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若函數(shù)在上是增函數(shù),求正數(shù)的取值范圍;
(2)當(dāng)時,設(shè)函數(shù)的圖象與x軸的交點(diǎn)為,,曲線在,兩點(diǎn)處的切線斜率分別為,,求證:+ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了檢查生產(chǎn)產(chǎn)品的甲、乙兩條流水線的生產(chǎn)情況,隨機(jī)地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測出它們的這一項質(zhì)量指標(biāo)值.若該項質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.下表是甲流水線樣本的頻數(shù)分布表,下圖是乙流水線樣本的頻率分布直方圖.
甲流水線樣本的頻數(shù)分布表
質(zhì)量指標(biāo)值 | 頻數(shù) |
9 | |
10 | |
17 | |
8 | |
6 |
乙流水線樣本的頻率分布直方圖
(1)根據(jù)圖形,估計乙流水線生產(chǎn)的產(chǎn)品的該項質(zhì)量指標(biāo)值的中位數(shù);
(2)設(shè)該企業(yè)生產(chǎn)一件合格品獲利100元,生產(chǎn)一件不合格品虧損50元,若某個月內(nèi)甲、乙兩條流水線均生產(chǎn)了1000件產(chǎn)品,若將頻率視為概率,則該企業(yè)本月的利潤約為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線:,(為參數(shù)),將曲線上的所有點(diǎn)的橫坐標(biāo)縮短為原來的,縱坐標(biāo)縮短為原來的后得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為。
(1)求曲線的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線交于不同的兩點(diǎn)A,B,點(diǎn)M為拋物線的焦點(diǎn),求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠利用隨機(jī)數(shù)表對生產(chǎn)的600個零件進(jìn)行抽樣測試,先將600個零件進(jìn)行編號,編號分別為001,002,,599,600從中抽取60個樣本,如下提供隨機(jī)數(shù)表的第4行到第6行:
32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42
84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04
32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45
若從表中第6行第6列開始向右依次讀取3個數(shù)據(jù),則得到的第6個樣本編號
A. 522B. 324C. 535D. 578
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一商場對每天進(jìn)店人數(shù)和商品銷售件數(shù)進(jìn)行了統(tǒng)計對比,得到如下表格:
人數(shù) | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
件數(shù) | 4 | 7 | 12 | 15 | 20 | 23 | 27 |
(1)在答題卡給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖,并由散點(diǎn)圖判斷銷售件數(shù)與進(jìn)店人數(shù)是否線性相關(guān)?(給出判斷即可,不必說明理由);
(2)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測進(jìn)店人數(shù)為80時,商品銷售的件數(shù)(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):,,,,,)
參考公式:,,其中,為數(shù)據(jù)的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知棱長為1的正方體,點(diǎn)是四邊形內(nèi)(含邊界)任意一點(diǎn), 是中點(diǎn),有下列四個結(jié)論:
①;②當(dāng)點(diǎn)為中點(diǎn)時,二面角的余弦值;③與所成角的正切值為;④當(dāng)時,點(diǎn)的軌跡長為.
其中所有正確的結(jié)論序號是( )
A.①②③B.①③④C.②③④D.①②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com