【題目】已知直線y2xm與拋物線Cy22pxp0)交于點(diǎn)AB

1mp|AB|5,求拋物線C的方程;

2)若m4p,求證:OAOBO為坐標(biāo)原點(diǎn)).

【答案】(1)y24x;(2)見(jiàn)解析

【解析】

(1)根據(jù)韋達(dá)定理和弦長(zhǎng)公式列方程可得;

(2)聯(lián)立直線與拋物線,根據(jù)韋達(dá)定理以及斜率公式可證結(jié)論。

1)直線y2xp與拋物線Cy22pxp0)聯(lián)立,可得4x26p+p20,設(shè)Ax1,y1),Bx2,y2),可得x1+x2p,x1x2,

|AB|5

解得p2,即拋物線的方程為y24x;

2)證明:由y2x4p聯(lián)立拋物線方程y22px,可得2x29px+8p20,

設(shè)Ax1,y1),Bx2,y2),可得x1+x2p,x1x24p2,

即有y1y2)=﹣2p4p2,即有x1x2+y1y20,

可得OAOB

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠銷(xiāo)售部以箱為單位銷(xiāo)售某種零件,每箱的定價(jià)為元,低于箱按原價(jià)銷(xiāo)售,不低于箱則有以下兩種優(yōu)惠方案:①以箱為基準(zhǔn),每多箱送箱;②通過(guò)雙方議價(jià),買(mǎi)方能以?xún)?yōu)惠成交的概率為,以?xún)?yōu)惠成交的概率為.

甲、乙兩單位都要在該廠購(gòu)買(mǎi)箱這種零件,兩單位都選擇方案②,且各自達(dá)成的成交價(jià)格相互獨(dú)立,求甲單位優(yōu)惠比例不低于乙單位優(yōu)惠比例的概率;

某單位需要這種零件箱,以購(gòu)買(mǎi)總價(jià)的數(shù)學(xué)期望為決策依據(jù),試問(wèn)該單位選擇哪種優(yōu)惠方案更劃算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)射線的極坐標(biāo)方程為,若射線與曲線的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,MBC頂點(diǎn)的坐標(biāo)為A(-1,2),B(1,4)C(3,2).

(1)ΔABC外接圓E的方程;

(2)若直線經(jīng)過(guò)點(diǎn)(0,4),且與圓E相交所得的弦長(zhǎng)為,求直線的方程;

(3)在圓E上是否存在點(diǎn)P,滿(mǎn)足,若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在多面體中, 平面,,四邊形是邊長(zhǎng)為的菱形.

(1)證明: ;

(2)線段上是否存在點(diǎn),使平面,若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,分別為橢圓的左、右焦點(diǎn)點(diǎn)在橢圓上,的周長(zhǎng)為6.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),設(shè)為坐標(biāo)原點(diǎn),是否存在常數(shù),使得恒成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E的一個(gè)頂點(diǎn)為,焦點(diǎn)在x軸上,若橢圓的右焦點(diǎn)到直線的距離是3

求橢圓E的方程;

設(shè)過(guò)點(diǎn)A的直線l與該橢圓交于另一點(diǎn)B,當(dāng)弦AB的長(zhǎng)度最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,平面,底面是正方形,且,中點(diǎn).

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙曲線經(jīng)過(guò)點(diǎn),兩條漸近線的夾角為,直線交雙曲線于、.

(1)求雙曲線的方程;

(2)若過(guò)原點(diǎn),為雙曲線上異于、的一點(diǎn),且直線、的斜率為、,證明:為定值;

(3)若過(guò)雙曲線的右焦點(diǎn),是否存在軸上的點(diǎn),使得直線繞點(diǎn)無(wú)論怎樣轉(zhuǎn)動(dòng),都有成立?若存在,求出的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案