分析 (1)根據(jù)$\overrightarrow{m}•\overrightarrow{n}$=cosC得A,B,C之間的關(guān)系,使用兩角和的余弦公式即可得出cosC=0;
(2)用α表示出∠PBC,分別在△APC和△BPC中使用正弦定理得出PC,即可列出關(guān)于α的方程,得出tanα.
解答 解:(1)∵$\overrightarrow{m}•\overrightarrow{n}$=cosC,即cosAcosB-sinAsinB=cos(A+B)=-cosC=cosC,
∴cosC=0,∵0<C<π,
∴C=$\frac{π}{2}$.
∴△ABC是直角三角形.
(2)∵∠APC=∠BPC=120°,
∴∠PCA=60°-α,∠BCP=90°-∠PCA=30°+α,
∴∠PBC=60°-∠PCB=30°-α.
在△PAC中,由正弦定理得$\frac{AC}{sin∠APC}=\frac{PC}{sinα}$,即$\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}=\frac{PC}{sinα}$,∴PC=2sinα.
在△BPC中,由正弦定理得$\frac{BC}{sin∠BPC}=\frac{PC}{sin∠PBC}$,即$\frac{6}{\frac{\sqrt{3}}{2}}=\frac{PC}{sin(30°-α)}$,∴PC=4$\sqrt{3}$sin(30°-α).
∴sinα=2$\sqrt{3}$sin(30°-α)=$\sqrt{3}$cosα-3sinα,
∴4sinα=$\sqrt{3}$cosα,
∴tanα=$\frac{\sqrt{3}}{4}$.
點評 本題考查了平面向量的數(shù)量積運算,三角函數(shù)的恒等變換,正弦定理的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-15,+∞) | B. | (-∞,2-12$\sqrt{2}$] | C. | (-∞,-16] | D. | (-∞,-15] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{π}{2}$) | B. | (-∞,-$\frac{π}{2}$) | C. | [$\frac{π}{2}$,0] | D. | [-$\frac{π}{2}$,$\frac{π}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -i | C. | i | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com