(本題滿分12分)如圖,已知橢圓焦點(diǎn)為,雙曲線,設(shè)是雙曲線異于頂點(diǎn)的任一點(diǎn),直線與橢圓的交點(diǎn)分別為。
1.      設(shè)直線的斜率分別為,求的值;
2.      是否存在常數(shù),使得恒成立?若存在,試求出的值;若不存在,請(qǐng)說明理由。
3.       
解:(1)設(shè)點(diǎn)那么

又點(diǎn)在雙曲線上,所以
所以
(2)設(shè)直線
由方程組
設(shè)

由弦長公式得
同理設(shè),
由(1) 得,,代入得
,則
則存在,使得恒成立。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點(diǎn)P在以F1F2為焦點(diǎn)的橢圓上,PF2F1F2,則橢圓的離心率為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知橢圓C的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,且過
(Ⅰ)求橢圓C的方程,
(Ⅱ)直線交橢圓C與A、B兩點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖有公共左頂點(diǎn)和公共左焦點(diǎn)F的橢圓Ⅰ與Ⅱ的長半軸的長分別為a1a2,半焦距分別為c1c2,且橢圓Ⅱ的右頂點(diǎn)為橢圓Ⅰ的中心.則下列結(jié)論不正確的是 (  )
A.a1c1>a2c2B.a1c1a2c2
C.a1c2<a2c1D.a1c2>a2c1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的離心率為,右焦點(diǎn)到直線的距離為,過的直線交橢圓于兩點(diǎn).
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若直線軸于,,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的方程為,過橢圓的右焦點(diǎn)且與x軸垂直的直線與橢圓交于P、Q兩點(diǎn),橢圓的右準(zhǔn)線與x軸交于點(diǎn)M,若為正三角形,則橢圓的離心率等于  ▲   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

與橢圓有相同的焦點(diǎn)且過點(diǎn)P的雙曲線方程是           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,把橢圓的長軸分成等分,過每個(gè)分點(diǎn)作軸的垂線交橢圓的上半部分于八個(gè)點(diǎn),是橢圓的左焦點(diǎn),則
         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

點(diǎn)是橢圓上的動(dòng)點(diǎn),為其左、右焦點(diǎn),則的取值范圍是  。

查看答案和解析>>

同步練習(xí)冊答案