如圖有公共左頂點(diǎn)和公共左焦點(diǎn)F的橢圓Ⅰ與Ⅱ的長(zhǎng)半軸的長(zhǎng)分別為a1a2,半焦距分別為c1c2,且橢圓Ⅱ的右頂點(diǎn)為橢圓Ⅰ的中心.則下列結(jié)論不正確的是 (  )
A.a1c1>a2c2B.a1c1a2c2
C.a1c2<a2c1D.a1c2>a2c1
D
因?yàn)闄E圓Ⅱ的右頂點(diǎn)為橢圓Ⅰ的中心且兩橢圓的左焦點(diǎn)和左頂點(diǎn)相同,所以,則,故選D
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在雙曲線中,,且雙曲線與橢圓有公共焦點(diǎn),則雙曲線的方程是(         )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓(a>b>0)的離心率,過(guò)頂點(diǎn)A、B的直線與原點(diǎn)的距離為

(1)求橢圓的方程.
(2)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn).問(wèn):是否存在k的值,使以CD為直徑的圓過(guò)E點(diǎn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓,右焦點(diǎn)為,是橢圓上三個(gè)不同的點(diǎn),則“成等差數(shù)列”是“”的( )
A.充要條件B.必要不充分條件
C.充分不必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.橢圓與雙曲線有相同的焦點(diǎn),則的值是
A.B.1或-2C.1或D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)如圖,已知橢圓焦點(diǎn)為,雙曲線,設(shè)是雙曲線異于頂點(diǎn)的任一點(diǎn),直線與橢圓的交點(diǎn)分別為。
1.      設(shè)直線的斜率分別為,求的值;
2.      是否存在常數(shù),使得恒成立?若存在,試求出的值;若不存在,請(qǐng)說(shuō)明理由。
3.       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線相切.
(1)求橢圓C的方程;
(2)設(shè)軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓于另一點(diǎn),證明:直線x軸相交于定點(diǎn);
(3)在(2)的條件下,過(guò)點(diǎn)的直線與橢圓交于、兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)若衛(wèi)星運(yùn)行軌道橢圓的離心率為,地
心為右焦點(diǎn),
(1)求橢圓方程 ;
(2)若P為橢圓上一動(dòng)點(diǎn),求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系中,橢圓)被圍于由條直線,所圍成的矩形內(nèi),任取橢圓上一點(diǎn),若、),則、滿足的一個(gè)等式是_______________.

查看答案和解析>>

同步練習(xí)冊(cè)答案