13.α,β,γ為不同的平面,a,b,c為三條不同的直線,則下列命題正確的是( 。
A.若α⊥γ,β⊥γ,則α∥βB.若a∥β,a∥b,則b∥β
C.若a∥α,b∥α,c⊥a,c⊥b,則c⊥αD.若a⊥γ,b⊥γ,則a∥b

分析 根據(jù)空間線面位置關(guān)系的判定定理和性質(zhì)及空間幾何體模型進(jìn)行判斷或舉反例說(shuō)明.

解答 解:對(duì)于A,當(dāng)平面α,β,γ兩兩垂直時(shí),顯然結(jié)論不成立,故A錯(cuò)誤;
對(duì)于B,若b?β,顯然結(jié)論不成立,故B錯(cuò)誤;
對(duì)于C,以長(zhǎng)方體ABCD-A′B′C′D′為例,AB∥平面A′B′C′D′,CD∥平面A′B′C′D′,BC⊥AB,BC⊥CD,
但BC與平面A′B′C′D′不垂直,故C錯(cuò)誤;
對(duì)于D,由線面垂直的性質(zhì)“垂直于同一個(gè)平面的兩條直線平行“可知D正確.
故選:D.

點(diǎn)評(píng) 本題考查了空間線面位置關(guān)系的判斷,借助幾何模型舉反例是關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知i是虛數(shù)單位,則(2+i)(1-3i)=5-5i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0).
(1)若點(diǎn)(-$\sqrt{3}$,1)在橢圓上,且(2,0)是它的一個(gè)焦點(diǎn),求橢圓方程;
(2)若B為橢圓的下頂點(diǎn),F(xiàn)是橢圓的右焦點(diǎn),直線BF與橢圓的另一個(gè)交點(diǎn)為D,P為橢圓右準(zhǔn)線上一點(diǎn),是否存在這樣的橢圓使得△PBD為等邊三角形?若存在,求出橢圓的離心率;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.圖為一塊平行四邊形園地ABCD,經(jīng)測(cè)量,AB=20米,BC=10米,∠ABC=120°,擬過(guò)線段AB上一點(diǎn)E設(shè)計(jì)一條直路EF(點(diǎn)F在四邊形ABCD的邊上,不計(jì)路的寬度),將該園地分為面積之比為3:1的左、右兩部分分別種植不同的花卉,設(shè)EB=x,EF=y(單位:米)
(1)當(dāng)點(diǎn)F與點(diǎn)C重合時(shí),試確定點(diǎn)E的位置;
(2)求y關(guān)于x的函數(shù)關(guān)系式,并確定點(diǎn)E、F的位置,使直路EF長(zhǎng)度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在等差數(shù)列{an}中,a3+a6=a4+5,且a2不大于1,則a8的取值范圍是( 。
A.(-∞,9]B.[9,+∞)C.(-∞,9)D.(9,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1的左右焦點(diǎn)分別為F1、F2,點(diǎn)P為雙曲線上任意一點(diǎn),點(diǎn)Q是以點(diǎn)P為圓心,|PF1|為半徑的圓上的任意點(diǎn),那么|QF2|( 。
A.有最小值8B.有最大值8C.有最小值4$\sqrt{5}$D.有最大值4$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)單調(diào)數(shù)列{an}的前n項(xiàng)和為Sn,6Sn=an2+9n-4,a1,a2,a6成等比數(shù)列.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{6n-1}{{{{({3n+1})}^2}•a_n^2}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為2c,直線l過(guò)點(diǎn)(a,0)和(0,b),且點(diǎn)($\frac{a}{2}$,0)到直線l的距離d≥$\frac{1}{5}$c,則雙曲線的離心率e的取值范圍是( 。
A.[$\frac{3}{2}$,2]B.[$\frac{\sqrt{5}}{2}$,2]C.[$\frac{3}{2}$,$\sqrt{5}$]D.[$\frac{\sqrt{5}}{2}$,$\sqrt{5}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如已知an=$\frac{n}{{n}^{2}+156}$(n∈N*),則數(shù)列{an}的最大項(xiàng)為12項(xiàng)或13項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案