分析 (I)由6Sn=an2+9n-4,n≥2時,6Sn-1=${a}_{n-1}^{2}$+9(n-1)-4,相減可得:an-3=±an-1,由于數(shù)列{an}是單調(diào)數(shù)列,可得an-an-1=3,因此數(shù)列{an}為等差數(shù)列,由a1,a2,a6成等比數(shù)列,可得${a}_{2}^{2}$=a1a6,解出即可得出.
(II)由an=3n-2.可得bn=$\frac{6n-1}{(3n+1)^{2}(3n-2)^{2}}$=$\frac{1}{3}[\frac{1}{(3n-2)^{2}}-\frac{1}{(3n+1)^{2}}]$,利用“裂項求和”方法即可得出.
解答 解:(I)∵6Sn=an2+9n-4,∴n≥2時,6Sn-1=${a}_{n-1}^{2}$+9(n-1)-4,相減可得:6an=${a}_{n}^{2}$-${a}_{n-1}^{2}$+9,整理為$({a}_{n}-3)^{2}$=${a}_{n-1}^{2}$,可得an-3=±an-1,
∵數(shù)列{an}是單調(diào)數(shù)列,∴an-an-1=3,
∴數(shù)列{an}為等差數(shù)列,公差為3.
∵a1,a2,a6成等比數(shù)列,
∴${a}_{2}^{2}$=a1a6,化為:$({a}_{1}+3)^{2}={a}_{1}({a}_{1}+3×5)$,化為a1=1.
∴an=1+3(n-1)=3n-2.
(II)∵an=3n-2.
∴bn=$\frac{6n-1}{(3n+1)^{2}(3n-2)^{2}}$=$\frac{1}{3}[\frac{1}{(3n-2)^{2}}-\frac{1}{(3n+1)^{2}}]$,
∴數(shù)列{bn}的前n項和Tn=$\frac{1}{3}[(1-\frac{1}{{4}^{2}})$+$(\frac{1}{{4}^{2}}-\frac{1}{{7}^{2}})$+…+$(\frac{1}{(3n-2)^{2}}-\frac{1}{(3n+1)^{2}})]$
=$\frac{1}{3}(1-\frac{1}{(3n+1)^{2}})$=$\frac{3{n}^{2}+2n}{(3n+1)^{2}}$.
點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式、遞推關(guān)系、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若α⊥γ,β⊥γ,則α∥β | B. | 若a∥β,a∥b,則b∥β | ||
C. | 若a∥α,b∥α,c⊥a,c⊥b,則c⊥α | D. | 若a⊥γ,b⊥γ,則a∥b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
區(qū)間 | 人數(shù) | 頻率 | |
第1組 | [25,30) | 50 | 0.1 |
第2組 | [30,35) | 50 | 0.1 |
第3組 | [35,40) | a | 0.4 |
第4組 | [40,45) | 150 | b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$] | B. | (-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$) | C. | (-∞,-$\frac{2\sqrt{6}}{3}$]∪[$\frac{2\sqrt{6}}{3}$,+∞) | D. | (-∞,-$\frac{2\sqrt{6}}{3}$)∪($\frac{2\sqrt{6}}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com