2.在△AOB中,O為原點,若已知A(2,cosθ)、B(sinθ,2),(θ∈(0,$\frac{π}{2}$]),求△AOB面積的最大值.

分析 在直角坐標系里,△OAB的面積S=4-$\frac{1}{2}$(sinθ×2)-$\frac{1}{2}$[cosθ×2]-$\frac{1}{2}$(2-sinθ)(2-cosθ),利用二倍角的正弦函數(shù)公式得到一個角的正弦函數(shù),根據(jù)正弦函數(shù)的值域及角度的范圍即可得到三角形面積最大值.

解答 解:∵A(2,cosθ)、B(sinθ,2),(θ∈(0,$\frac{π}{2}$]),
∴△OAB的面積S=4-$\frac{1}{2}$(sinθ×2)-$\frac{1}{2}$[cosθ×2]-$\frac{1}{2}$(2-sinθ)(2-cosθ)=2-$\frac{1}{2}$sinθcosθ=2-$\frac{1}{4}sin2θ$,
∵2θ∈(0,π],故當2θ=π,即θ=$\frac{π}{2}$,S取最大值2.

點評 本題考查的知識點是三角形面積公式,基本利用割補法,求出三角形面積的表達式,是解答的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.如圖為四棱錐P-ABCD的表面展開圖,四邊形ABCD為矩形,$AB=\sqrt{2}$,AD=1.已知頂點P在底面ABCD上的射影為點A,四棱錐的高為$\sqrt{2}$,則在四棱錐P-ABCD中,PC與平面ABCD所成角的正切值為$\frac{{\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在四棱錐P-ABCD中,AB∥CD,AB⊥AD,PA=AB=2CD=4,$PB=2AD=4\sqrt{2}$,平面PAB⊥平面ABCD.
(1)求證:BD⊥平面PAC;
(2)求二面角A-PC-D的余弦值;
(3)設(shè)點Q為線段PB上一點,且直線QC與平面PAC所成角的正弦值為$\frac{{\sqrt{3}}}{3}$,求$\frac{PQ}{PB}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.執(zhí)行如圖的程序框圖,若輸入a,b,k分別為1,2,3,則輸出的M=( 。
A.$\frac{2}{3}$B.$\frac{16}{5}$C.$\frac{7}{2}$D.$\frac{15}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.某幾何體的三視圖如圖所示,圖中網(wǎng)格小正方形邊長為1,則該幾何體的體積是(  )
A.4B.$\frac{16}{3}$C.$\frac{20}{3}$D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖所示,在四棱錐P-ABCD中,底面ABCD為菱形,且∠DAB=60°,PA=PD,M為CD的中點,BD⊥PM.
(1)求證:平面PAD⊥平面ABCD;
(2)若∠APD=60°,求直線AB與平面PBM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若1≤x≤4,3≤y≤6,則$\frac{x}{y}$的取值范圍是( 。
A.$[\frac{1}{3},\frac{2}{3}]$B.$[\frac{1}{6},\frac{4}{3}]$C.$[\frac{1}{3},\frac{4}{3}]$D.$[\frac{2}{3},\frac{4}{3}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=ax3+bx+c(a>0)為奇函數(shù),其圖象在點(1,f(1))處的切線與直線x-3y-1=0垂直,導函數(shù)f′(x)的最小值為-6,求a、b、c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.如圖,在△ABC中,|AB|=4,點E為AB的中點,點D為線段AB垂直平分線上的一點,且|DE|=3,固定邊AB,在平面ABD內(nèi)移動頂點C,使得△ABC的內(nèi)切圓始終與AB切于線段BE的中點,且C、D在直線AB的同側(cè),在移動過程中,當|CA|+|CD|取得最小值時,點C到直線DE的距離為$2\sqrt{15}-6$.

查看答案和解析>>

同步練習冊答案