1.9192被100除所得的余數(shù)為81.

分析 9192=(90+1)92,利用二項式定理展開即可得出.

解答 解:9192=(90+1)92=9092+${∁}_{92}^{1}9{0}^{91}$+…+${∁}_{92}^{90}•9{0}^{2}$+${∁}_{92}^{91}×90$+1
=902×$(9{0}^{90}+{∁}_{92}^{1}9{0}^{89}$+…+${∁}_{92}^{90})$+8281
∴9192被100除所得的余數(shù)為81.
故答案為:81.

點評 本題考查了二項式定理的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.己知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸長為6,焦點F1(-c,0)到長軸的兩個端點的距離之比為$\frac{1}{9}$.
(I)求橢圓C的離心率及橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若橢圓C上一點P(m,n),滿足PF1⊥PF2,當(dāng)n>0時,求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,AD是△ABC的角平分線,以AD為直徑的圓與BC相切于D點,與AB,AC交于點E,F(xiàn).
(I)求證:BE•AD=ED•DC;
(Ⅱ)當(dāng)點E為AB的中點時,若圓的半徑為r,求EC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系中,以原點O為極點,x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{2}+t\\ y=1-2t\end{array}$(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=1.
(Ⅰ)求直線l與圓C的公共點的個數(shù);
(Ⅱ)在平面直角坐標(biāo)系中,圓C經(jīng)過伸縮變換$\left\{\begin{array}{l}x'=x\\ y'=2y\end{array}$得到曲線Ω,設(shè)M(x,y)為曲線Ω上任意一點,求4x2+xy+y2的最大值,并求出此時點M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=ex+ln(x+1)-ax,a∈R.
(1)g(x)為f(x)的導(dǎo)函數(shù),討論g(x)的零點個數(shù);
(2)當(dāng)x≥0時,不等式ex+(x+1)ln(x+1)≥$\frac{1}{2}$ax2+ax+1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.執(zhí)行程序框圖,該程序運行后輸出的k的值是(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.由直線y=2x及曲線y=4-2x2圍成的封閉圖形的面積為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=$\sqrt{lo{g}_{\frac{1}{2}}{x}^{2}-1}$的定義域是[-$\frac{\sqrt{2}}{2}$,0)∪(0,$\frac{\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知A={a,0,-1},B={c+b,$\frac{1}{a+b}$,1},且A=B,則a=1,b=-2,c=2.

查看答案和解析>>

同步練習(xí)冊答案