化簡:(sinα+cosα)2
考點:三角函數(shù)的化簡求值
專題:三角函數(shù)的求值
分析:利用三角函數(shù)的平方關系與二倍角的正弦即可化簡所求關系式.
解答: 解:(sin2α+cos2α)2=sin2α+cos2α+2sinαcosα=1+sin2α.
點評:本題考查三角函數(shù)的化簡求值,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線a,b,c和平面α,β,γ,下列說法正確的是(  )
A、若a⊥b,b⊥c則a⊥c
B、若α⊥β,β⊥γ,則α⊥γ
C、若a∥α,b∥β,a∥b,則α∥β
D、若α∥β,β∥γ,則α∥γ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的3倍且經(jīng)過點M(3,1)平行于OM的直線l在y軸上的截距為m(m≠0),且交橢圓于A,B兩不同點.
(Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;
(Ⅲ)求證:直線MA、MB與x軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}的前n項和為Sn,且S2=
3
2
a2-1,S3=
3
2
a3-1.
(1)求數(shù)列{an}的通項公式;
(2)在an于an+1之間插入n個數(shù),使這n+2個數(shù)組成公差為dn的等差數(shù)列,記數(shù)列{
1
dn
)的前n項和為Tn,求使得
8
5
Tn+
n
3n-1
40
27
成立的正整數(shù)n的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知復數(shù)(m2-5m+6)+(m2-3m)i是純虛數(shù),求實數(shù)m的值;
(2)把復數(shù)z的共軛復數(shù)記做
.
z
,已知(1+2i)
.
z
=4+3i,求z及
z
.
z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,且滿足Sn=2-an,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=1+2log 
1
2
an,數(shù)列{
1
bnbn+1
}的前n項和為Tn.求證:Tn
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)y=f(x)定義在[-1,1]上,且在定義域內(nèi)是減函數(shù),若f(a2-a-1)+f(4a-5)>0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

7名同學排隊照相.
(1)若排成一排照,甲、乙、丙三人必須相鄰,有多少種不同的排法?(用數(shù)字作答)
(2)若排成一排照,7人中有4名男生,3名女生,女生不能相鄰,有多少種不面的排法?(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C的焦點在x軸上,一條漸近線為y=
4
3
x,實軸長為12,
(1)求雙曲線的標準方程;
(2)以雙曲線C的兩個頂點為焦點,以雙曲線的焦點為頂點,求橢圓的標準方程.

查看答案和解析>>

同步練習冊答案