已知奇函數(shù)y=f(x)定義在[-1,1]上,且在定義域內(nèi)是減函數(shù),若f(a2-a-1)+f(4a-5)>0,求實(shí)數(shù)a的取值范圍.
考點(diǎn):奇偶性與單調(diào)性的綜合
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:將f(a2-a-1)+f(4a-5)>0變?yōu)閒(a2-a-1)>-f(4a-5),利用奇函數(shù),變?yōu)閒(a2-a-1)>f(-4a+5),再由單調(diào)性轉(zhuǎn)化為直接關(guān)于a的不等式求解即可.
解答: 解:因?yàn)閒(a2-a-1)+f(4a-5)>0,所以f(a2-a-1)>-f(4a-5),
因?yàn)楹瘮?shù)y=f(x)是奇函數(shù),所以上式變?yōu)閒(a2-a-1)>f(-4a+5),
又因?yàn)槎x在[-1,1]上的函數(shù)y=f(x)是減函數(shù),所以
-1≤a2-a-1≤1
-1≤4a-5≤1
a2-a-1<-4a+5

解得:1≤a≤
-3+
33
2
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是奇偶性與單調(diào)性的綜合,函數(shù)的單調(diào)性的性質(zhì),其中利用函數(shù)的性質(zhì),將原不等式轉(zhuǎn)化為一個(gè)關(guān)于a的不等式組,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“所有9的倍數(shù)都是3的倍數(shù).某數(shù)是9的倍數(shù),故該數(shù)為3的倍數(shù),”上述推理( 。
A、完全正確
B、推理形式不正確
C、錯(cuò)誤,因?yàn)榇笮∏疤岵灰恢?/span>
D、錯(cuò)誤,因?yàn)榇笄疤徨e(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是邊長(zhǎng)為a的正方形,AB=AC,BC=
2
AB,A1A⊥平面ABC,BC∥B1C1,且BC=2B1C1
(1)求證:A1C1∥面ABC;
(2)求證:A1C1⊥平面B1BCC1;
(3)求三棱錐B-A1CC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):(sinα+cosα)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=cos2x-sin2x.
(1)求f(
π
3
)的值及f(x)的最大值;
(2)求f(x)的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n+1-2,數(shù)列{bn}滿(mǎn)足bn=
1
(n+1)log2an

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)l過(guò)點(diǎn)(0,1),并與雙曲線(xiàn)C:
x2
a2
-
y2
b2
=1(a>0,b>0)相交于不同的A、B兩點(diǎn),離心率為2,右焦點(diǎn)F(c,0)到右準(zhǔn)線(xiàn)的距離等于
3
2

(1)求雙曲線(xiàn)方程;    
(2)求AB的長(zhǎng)度;
(3)是否存在實(shí)數(shù)k,使得以線(xiàn)段AB為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)?若存在,求出k的值;若不存在,寫(xiě)出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=
3x2+7x-4
x2-3
的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2,2),向量
b
與向量
a
的夾角為
4
,且
a
b
=-2,
(1)求向量
b
;
(2)已知向量
b
與x軸垂直,向量
c
=(cosA,2cos2
C
2
),其中A、C是△ABC的內(nèi)角,若三角形的三內(nèi)角A、B、C依次成等差數(shù)列,試求|
b
+
c
|的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案