“所有9的倍數(shù)都是3的倍數(shù).某數(shù)是9的倍數(shù),故該數(shù)為3的倍數(shù),”上述推理(  )
A、完全正確
B、推理形式不正確
C、錯誤,因?yàn)榇笮∏疤岵灰恢?/span>
D、錯誤,因?yàn)榇笄疤徨e誤
考點(diǎn):進(jìn)行簡單的演繹推理
專題:推理和證明
分析:要分析一個演繹推理是否正確,主要觀察所給的大前提,小前提和結(jié)論是否都正確,根據(jù)三個方面都正確,得到結(jié)論.
解答: 解:∵所有6的倍數(shù)都是3的倍數(shù),某數(shù)是6的倍數(shù),則該數(shù)是3的倍數(shù),
大前提:所有6的倍數(shù)都是3的倍數(shù)是正確的,
小前提:某數(shù)是6的倍數(shù)是正確的,
結(jié)論:該數(shù)是3的倍數(shù)是正確的,
∴這個推理是正確的,
故選A
點(diǎn)評:本題是一個簡單的演繹推理,這種問題不用進(jìn)行運(yùn)算,只要根據(jù)所學(xué)的知識點(diǎn),判斷這種說法是否正確,是一個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線l1與直線l2:3x+2y-12=0的交點(diǎn)在x軸上,并且l1⊥l2,則l1在y軸上的截距是(  )
A、-4
B、4
C、-
8
3
D、
8
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)Q(0,2
2
)及拋物線y2=4x上一動點(diǎn)P(x,y),則x+|PQ|的最小值是( 。
A、2
B、3
C、
2
+1
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線a,b,c和平面α,β,γ,下列說法正確的是( 。
A、若a⊥b,b⊥c則a⊥c
B、若α⊥β,β⊥γ,則α⊥γ
C、若a∥α,b∥β,a∥b,則α∥β
D、若α∥β,β∥γ,則α∥γ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin5°sin25°-sin95°sin65°的值是( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若l,m,n是互不相同的空間直線,α,β是不重合的平面,下列命題正確的是( 。
A、若α∥β,l?α,n?β,則l∥n
B、若α⊥β,l?α,則l⊥β
C、若l⊥n,m⊥n,則l∥m
D、若l⊥α,l∥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過點(diǎn)M(2,2)且在兩軸上截距相等的直線是( 。
A、x+y=4
B、x+y=2
C、x=2或y=2
D、x+y=4或x=y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長是短軸長的3倍且經(jīng)過點(diǎn)M(3,1)平行于OM的直線l在y軸上的截距為m(m≠0),且交橢圓于A,B兩不同點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;
(Ⅲ)求證:直線MA、MB與x軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)y=f(x)定義在[-1,1]上,且在定義域內(nèi)是減函數(shù),若f(a2-a-1)+f(4a-5)>0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案