【題目】在正方體ABCD-A1B1C1D1中,如圖.
(1)求證:平面AB1D1∥平面C1BD;
(2)試找出體對(duì)角線A1C與平面AB1D1和平面C1BD的交點(diǎn)E,F(xiàn),并證明:A1E=EF=FC.
【答案】略
【解析】證明:(1)因?yàn)樵谡襟wABCD-A1B1C1D1中,ADB1C1,所以四邊形AB1C1D是平行四邊形,所以AB1∥C1D.又因?yàn)镃1D平面C1BD,AB1平面C1BD,所以AB1∥平面C1BD.同理,B1D1∥平面C1BD.又因?yàn)锳B1∩B1D1=B1,AB1平面AB1D1,B1D1平面AB1D1,所以平面AB1D1∥平面C1BD.
(2)如圖,設(shè)A1C1與B1D1交于點(diǎn)O1,連接AO1,與A1C交于點(diǎn)E.
因?yàn)锳O1平面AB1D1,
所以點(diǎn)E也在平面AB1D1內(nèi),所以點(diǎn)E就是A1C與平面AB1D1的交點(diǎn).
連接AC交BD于O,連接C1O與A1C交于點(diǎn)F,則點(diǎn)F就是A1C與平面C1BD的交點(diǎn).
下面證明A1E=EF=FC.
因?yàn)槠矫鍭1C1CA∩平面AB1D1=EO1,平面A1C1CA∩平面C1BD=C1F,平面AB1D1∥平面C1BD,所以EO1∥C1F.
在△A1C1F中,O1是A1C1的中點(diǎn),所以E是A1F的中點(diǎn),
即A1E=EF.同理,CF=FE,所以A1E=EF=FC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= +alnx﹣2,曲線y=f(x)在點(diǎn)P(1,f(1))處的切線與直線y=x+3垂直.
(1)求實(shí)數(shù)a的值;
(2)記g(x)=f(x)+x﹣b(b∈R),若函數(shù)g(x)在區(qū)間[e﹣1 , e]上有兩個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍;
(3)若不等式πf(x)>( )1+x﹣lnx在|t|≤2時(shí)恒成立,求實(shí)數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)求與點(diǎn)P(3,5)關(guān)于直線l:x-3y+2=0對(duì)稱的點(diǎn)P′的坐標(biāo).(2)已知直線l:y=-2x+6和點(diǎn)A(1,-1),過(guò)點(diǎn)A作直線l1與直線l相交于B點(diǎn),且|AB|=5,求直線l1的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓M過(guò)點(diǎn)A(1,3),B(4,2),且圓心在直線y=x﹣3上.
(Ⅰ)求圓M的方程;
(Ⅱ)若過(guò)點(diǎn)(﹣4,1)的直線l與圓M相切,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確的個(gè)數(shù)是( )
①若直線l上有無(wú)數(shù)個(gè)點(diǎn)不在平面α內(nèi),則l∥α;
②若直線l與平面α平行,則l與平面α內(nèi)的任意一條直線都平行;
③如果兩條平行直線中的一條與一個(gè)平面平行,那么另一條也與這個(gè)平面平行;
④若直線l與平面α平行,則l與平面α內(nèi)的任意一條直線都沒有公共點(diǎn).
A.0 B.1
C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠生產(chǎn)一種產(chǎn)品的固定成本(即固定投入)為0.5萬(wàn)元,但每生產(chǎn)一百件這樣的產(chǎn)品,需要增加可變成本(即另增加投入)0.25萬(wàn)元. 市場(chǎng)對(duì)此產(chǎn)品的年需求量為500件,銷售的收入函數(shù)為= (單位:萬(wàn)元),其中是產(chǎn)品售出的數(shù)量(單位:百件).
(1)該公司這種產(chǎn)品的年產(chǎn)量為百件,生產(chǎn)并銷售這種產(chǎn)品所得到的利潤(rùn)為當(dāng)年產(chǎn)量的函數(shù),求;
(2)當(dāng)年產(chǎn)量是多少時(shí),工廠所得利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】環(huán)境監(jiān)測(cè)中心監(jiān)測(cè)我市空氣質(zhì)量,每天都要記錄空氣質(zhì)量指數(shù)(指數(shù)采取10分制,保留一位小數(shù)).現(xiàn)隨機(jī)抽取20天的指數(shù)(見下表),將指數(shù)不低于8.5視為當(dāng)天空氣質(zhì)量?jī)?yōu)良.
天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
空氣質(zhì)量指數(shù) | 7.1 | 8.3 | 7.3 | 9.5 | 8.6 | 7.7 | 8.7 | 8.8 | 8.7 | 9.1 |
天數(shù) | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
空氣質(zhì)量指數(shù) | 7.4 | 8.5 | 9.7 | 8.4 | 9.6 | 7.6 | 9.4 | 8.9 | 8.3 | 9.3 |
(Ⅰ)求從這20天隨機(jī)抽取3天,至少有2天空氣質(zhì)量為優(yōu)良的概率;
(Ⅱ)以這20天的數(shù)據(jù)估計(jì)我市總體空氣質(zhì)量(天數(shù)很多).若從我市總體空氣質(zhì)量指數(shù)中隨機(jī)抽取3天的指數(shù),用X表示抽到空氣質(zhì)量為優(yōu)良的天數(shù),求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資類產(chǎn)品的收益與投資額成正比,投資類產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬(wàn)元時(shí)兩類產(chǎn)品的收益分別為0.125萬(wàn)元和0.5萬(wàn)元.
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭有20萬(wàn)元資金,全部用于理財(cái)投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三人獨(dú)立地對(duì)某一技術(shù)難題進(jìn)行攻關(guān).甲能攻克的概率為 ,乙能攻克的概率為 ,丙能攻克的概率為 .
(1)求這一技術(shù)難題被攻克的概率;
(2)若該技術(shù)難題末被攻克,上級(jí)不做任何獎(jiǎng)勵(lì);若該技術(shù)難題被攻克,上級(jí)會(huì)獎(jiǎng)勵(lì)a萬(wàn)元.獎(jiǎng)勵(lì)規(guī)則如下:若只有1人攻克,則此人獲得全部獎(jiǎng)金a萬(wàn)元;若只有2人攻克,則獎(jiǎng)金獎(jiǎng)給此二人,每人各得 萬(wàn)元;若三人均攻克,則獎(jiǎng)金獎(jiǎng)給此三人,每人各得 萬(wàn)元.設(shè)甲得到的獎(jiǎng)金數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com