已知數(shù)列{an}的通項(xiàng)公式為an=
9
2
-n.
(1)證明:數(shù)列{an}是等差數(shù)列;
(2)求此數(shù)列的前二十項(xiàng)和S20
考點(diǎn):數(shù)列的求和,等差關(guān)系的確定
專題:等差數(shù)列與等比數(shù)列
分析:(1)利用等差數(shù)列的定義即可證明;
(2)利用等差數(shù)列的前n項(xiàng)和公式即可得出.
解答: 解:(1)∵數(shù)列{an}的通項(xiàng)公式為an=
9
2
-n,
∴當(dāng)n≥2時(shí),an-an-1=
9
2
-n-[
9
2
-(n-1)]=1,
∴數(shù)列{an}是等差數(shù)列,首項(xiàng)為
7
2
,公差為1.
(2)∵Sn=
n(a1+an)
2
=
n(
7
2
+
9
2
-n)
2
=
n(8-n)
2

∴S20=
20(8-20)
2
=-120.
點(diǎn)評(píng):本題考查了等差數(shù)列定義通項(xiàng)公式及其前n項(xiàng)和公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(x2+ax+a+1)為R上偶函數(shù),g(x)=(
1
2
x-m.
(1)若對(duì)任意x2∈[-2,-1],都存在x1∈[0,
3
],使得f(x1)=g(x2),求實(shí)數(shù)m的范圍;
(2)若對(duì)任意x1∈[0,
3
],x2∈[-2,-1],使得f(x1)≥g(x2),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},an>0,其前n項(xiàng)和Sn滿足Sn=
1
2
(an-1)(an+2)
,其中n∈N*
(1)求證;數(shù)列{an}為等差數(shù)列,并求其通項(xiàng)公式;
(2)設(shè)bn=an•2-n,Tn為數(shù)列{bn}的前n項(xiàng)和,求證:Tn<3;
(3)設(shè)cn=4n+(-1)n-1λ•2an(λ為非零整數(shù),n∈N*),試確定λ的值,使得對(duì)任意n∈N*,都有cn+1>cn成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的方程為x2+4y2=16,若P是橢圓上一點(diǎn),且|PF1|=7,則|PF2|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=
3
2
(an-1)(n∈N*)
,數(shù)列{bn}中,b1=1,點(diǎn)P(bn,bn+1)在直線x-y+1=0上.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式an和bn;
(2)設(shè)cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn,并求Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a<0,b<0,則p=
b2
a
+
a2
b
與q=a+b的大小關(guān)系為( 。
A、p<qB、p≤q
C、p>qD、p≥q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與直線x-y-4=0和圓(x+1)2+(y-1)2=2都相切的半徑最小的圓方程是(  )
A、(x-1)2+(y+1)2=2
B、(x+1)2+(y+1)2=4
C、(x+1)2+(y+1)2=2
D、(x-1)2+(y+1)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=20.3,b=0.32,c=log20.5,則a,b,c的大小關(guān)系為( 。
A、a<b<c
B、b<a<c
C、c<a<b
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時(shí),可全部租出.當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加一輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.
(1)設(shè)每輛車的月租金為x元,試寫出租賃公司月收益y關(guān)于x的函數(shù);
(2)求每輛車的月租金為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案