15.已知數(shù)列{an}是等比數(shù)列,a3=1,a5=4,則公比q等于( 。
A.2B.-2C.$±\frac{1}{2}$D.±2

分析 利用等比數(shù)列的通項公式及其性質(zhì)即可得出.

解答 解:∵a3=1,a5=4,
∴q2=$\frac{{a}_{5}}{{a}_{3}}$=4,
∴q=±2,
故選:D

點評 本題考查了等比數(shù)列的通項公式及其性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)0≤x<2π,且$\sqrt{1-sin2x}$=sinx-cosx,則x的取值范圍是$[\frac{π}{4},\frac{5π}{4}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.4個男生,3個女生站成一排.(必須寫出算式再算出結(jié)果才得分)
(Ⅰ)3個女生必須排在一起,有多少種不同的排法?
(Ⅱ)任何兩個女生彼此不相鄰,有多少種不同的排法?
(Ⅲ)甲乙二人之間恰好有三個人,有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機(jī)收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如表所示.
一次購物量1至4件5至8件9至12件13至16件17件及以上
顧客數(shù)(人)x3025y10
結(jié)算時間(分鐘/人)11.522.53
已知這100位顧客中的一次購物量超過8件的顧客占55%.
(1)確定x,y的值,并求顧客一次購物的結(jié)算時間X的分布列與數(shù)學(xué)期望;
(2)若某顧客到達(dá)收銀臺時前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨立,求該顧客結(jié)算前的等候時間不超過3 鐘的概率.(注:將頻率視為概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.解關(guān)于x不等式x2-x-a(a-1)>0(a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在多面體ABCDE中,ABDE是平行四邊形,AB、AC、AD兩兩垂直.
(Ⅰ)求證:平面ACD⊥平面ECD;
(Ⅱ)若BC=CD=DB=$\sqrt{2}$,求點B到平面ECD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四棱錐A-EFCB中,四邊形EFCB是梯形,EF∥BC且EF=$\frac{3}{4}$BC,△ABC是邊長為2的正三角形,頂點F在AC上射影為點G,且FG=$\sqrt{3}$,CF=$\frac{{\sqrt{21}}}{2}$,BF=$\frac{5}{2}$.
(1)證明:平面FGB⊥平面ABC;
(2)求三棱錐E-GBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知正方形ABCD和矩形ACEF所在平面相互垂直,$AB=\sqrt{2},AF=1$,M在線段EF上.
(1)若M是線段EF的中點,證明:平面AMD⊥平面BDF;
(2)命題“若M為線段EF的中點,則平面ADM⊥平面BDF”的逆命題是否成立?若成立,給出證明,否則請舉出反例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,平行四邊形PABC中,∠PAC=∠ABC=90°,PA=AB=2$\sqrt{3}$,AC=4,現(xiàn)把△PAC沿AC折起,使PA與平面ABC成60°角,設(shè)此時P在平面ABC上的投影為O點(O與B在AC的同側(cè)).

(Ⅰ)求證:OB∥平面PAC;
(Ⅱ)試問:線段PA上是否在存在一點M,使得二面角M-BC-A的余弦值為$\frac{5\sqrt{37}}{37}$?若存在,指出M的位置,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案