【題目】某公司生產(chǎn)一批產(chǎn)品需要原材料500噸,每噸原材料可創(chuàng)造利潤12萬元,該公司通過設備升級,生產(chǎn)這批產(chǎn)品所需原材料減少了噸,且每噸原材料創(chuàng)造的利潤提高了;若將少用的噸原材料全部用于生產(chǎn)公司新開發(fā)的產(chǎn)品,每噸原材料創(chuàng)造的利潤為萬元,其中a>0

1)若設備升級后生產(chǎn)這批A產(chǎn)品的利潤不低于原來生產(chǎn)該批A產(chǎn)品的利潤,求的取值范圍;

2)若生產(chǎn)這批B產(chǎn)品的利潤始終不高于設備升級后生產(chǎn)這批A產(chǎn)品的利潤,求的最大值.

【答案】125.5

【解析】

試題分析:(1)由題意, ,即可求 的取值范圍.(2)利用生產(chǎn)這批 產(chǎn)品的利潤始終不高于設備升級后生產(chǎn)這批 產(chǎn)品的利潤,建立不等式,即可求 的最大值.

試題解析:

(1)由題意得:

整理得:,又

(2)由題意知,生產(chǎn)產(chǎn)品創(chuàng)造的利潤為萬元,

設備升級后,生產(chǎn)產(chǎn)品創(chuàng)造的利潤為萬元,

則12恒成立,

,且,

,當且僅當時等號成立,

,

的最大值為5.5.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】自點A(-3,3)發(fā)出的光線L射到x軸上,被x軸反射,其反射光線所在直線與圓x2+y2-4x-4y+7=0相切,求光線L所在直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過點的動直線與圓相交于兩點,與直線相交于.

(1)當垂直時,求直線的方程,并判斷圓心與直線的位置關系;

(2)當時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

)當時,求曲線處的切線方程;

)當時,若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在高為2的梯形中, , ,過、分別作 ,垂足分別為、。已知,將梯形沿、同側折起,得空間幾何體,如圖2。

(1)若,證明:

(2)若,證明: ;

(3)在(1),(2)的條件下,求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的空間幾何體中,平面平面是邊長為2的等邊三角形,,平面所成的角,且點E平面上的射落在的平分線上.

(1)求證:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)恒成立,求實數(shù)的取值范圍;

(Ⅲ)求整數(shù)的值,使函數(shù)在區(qū)間上有零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),,,的圖象在點處的切線的斜率為,且函數(shù)為偶函數(shù).若函數(shù)滿足下列條件:;對一切實數(shù),不等式恒成立.

1求函數(shù)的表達式;

2設函數(shù)的兩個極值點,恰為的零點.當時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,上異于原點的任意一點,過點的直線于另一點,交軸的正半軸于點,且有.當點的橫坐標為3時,為正三角形.

(1)求的方程;

(2)延長交拋物線于點,過點作拋物線的切線,求證:.

查看答案和解析>>

同步練習冊答案