5.在等比數(shù)列{an}中,若a1=2,a4=16,則{an}的前5項和S5等于( 。
A.30B.31C.62D.64

分析 設公比為q,運用等比數(shù)列的通項公式可得q,再由等比數(shù)列的求和公式計算即可得到所求值.

解答 解:等比數(shù)列{an}中,a1=2,a4=16,
設公比為q,$\frac{{a}_{4}}{{a}_{1}}$=q3=8,解得q=2,
則此數(shù)列的前5項的和S5=$\frac{{a}_{1}(1-{q}^{5})}{1-q}$=$\frac{2(1-{2}^{5})}{1-2}$=62.
故選:C.

點評 本題考查等比數(shù)列的前5項和的求法,是基礎題,解題時要注意等比數(shù)列的通項公式的靈活運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的部分圖象如圖所示,M為最高點,該圖象與y軸交于點F(0,$\sqrt{2}$),與x軸交于點B,C,且△MBC的面積為π.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若f(α-$\frac{π}{4}$)=$\frac{2\sqrt{5}}{5}$,求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)y=-2cos2x+cosx+1,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若復數(shù)z滿足z2=-4,則|1+z|=( 。
A.3B.$\sqrt{3}$C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.雙曲線M:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,直線x=a與雙曲線M漸近線交于點P,若sin∠PF1F2=$\frac{1}{3}$,則該雙曲線的離心率為$\frac{9}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知命題p∧q是假命題,p∨q是真命題,則下列命題一定是真命題的是( 。
A.pB.(¬p)∧(¬q)C.qD.(¬p)∨(¬q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設集合A={x∈N|,0≤x≤2},B={x∈N|1≤x≤3},則A∪B=(  )
A.{1,2}B.{0,1,2,3}C.{x|1≤x≤2}D.{x|0≤x≤3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-1,1),則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為(  )
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.-$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.甲與其四位朋友各有一輛私家車,甲的車牌尾數(shù)是0,其四位朋友的車牌尾數(shù)分別是0,2,1,5,為遵守當?shù)?月1日至5日5天的限行規(guī)定(奇數(shù)日車牌尾數(shù)為奇數(shù)的車通行,偶數(shù)日車牌尾數(shù)為偶數(shù)的車通行),五人商議拼車出行,每天任選一輛符合規(guī)定的車,但甲的車最多只能用一天,則不同的用車方案總數(shù)為64.

查看答案和解析>>

同步練習冊答案