分析 求出函數(shù)的導(dǎo)數(shù),可得曲線(xiàn)y=$\frac{1}{2}$x+sinx,則此曲線(xiàn)在x=$\frac{π}{3}$處的切線(xiàn)斜率,求出切點(diǎn),由點(diǎn)斜式方程可得切線(xiàn)的方程.
解答 解:曲線(xiàn)y=$\frac{1}{2}$x+sinx的導(dǎo)數(shù)為y′=cosx+$\frac{1}{2}$,
可得曲線(xiàn)y=$\frac{1}{2}$x+sinx,在x=$\frac{π}{3}$處的切線(xiàn)斜率為$\frac{1}{2}+\frac{1}{2}$=1,
切點(diǎn)為($\frac{π}{3}$,$\frac{π+3\sqrt{3}}{6}$),
可得曲線(xiàn)y=$\frac{1}{2}$x+sinx,則此曲線(xiàn)在x=$\frac{π}{3}$處的切線(xiàn)方程為y-$\frac{π+3\sqrt{3}}{6}$=x-$\frac{π}{3}$,
即為6x-6y+3$\sqrt{3}$-π=0,
故答案為:6x-6y+3$\sqrt{3}$-π=0.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線(xiàn)的方程,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)和運(yùn)用點(diǎn)斜式方程是解題的關(guān)鍵,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分必要條件 | B. | 既不充分又不必要條件 | ||
C. | 充分不必要條件 | D. | 必要不充分條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{200}$ | B. | 200 | C. | 20 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-3,4) | B. | (-3,-4) | C. | (3,4) | D. | (3,-4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $x=kπ+{(-1)}^{k}•\frac{π}{6}$,k∈Z | B. | $x=2kπ{({-1})^k}•\frac{π}{6}$,k∈Z* | ||
C. | $x=kπ+{({-1})^{k+1}}•\frac{π}{6}$,k∈Z | D. | $x=2kπ+{({-1})^{k+1}}•\frac{π}{6}$,k∈Z |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com