8.執(zhí)行右邊的程序框圖,若輸入?=0.01,則輸出的e精確到?的近似值為(  )
A.2.69B.2.70C.2.71D.2.72

分析 模擬程序的運行,依次寫出每次循環(huán)得到的e,n的值,當n=5時滿足條件退出循環(huán),輸出e的值即可得解.

解答 解:模擬程序的運行,可得
?=0.01,e=1,n=1
執(zhí)行循環(huán)體,e=2,n=2
不滿足條件$\frac{1}{n!}$<?,執(zhí)行循環(huán)體,e=2+0.5=2.5,n=3
不滿足條件$\frac{1}{n!}$<?,執(zhí)行循環(huán)體,e=2.5+$\frac{1}{6}$,n=4
不滿足條件$\frac{1}{n!}$<?,執(zhí)行循環(huán)體,e=2.5+$\frac{1}{6}$+$\frac{1}{24}$,n=5
由于$\frac{1}{5!}$≈0.008<?=0.01,滿足條件$\frac{1}{n!}$<?,退出循環(huán),輸出e的值為2.5+$\frac{1}{6}$+$\frac{1}{24}$=2.71.
故選:C.

點評 本題考查的知識點是程序框圖,在寫程序的運行結(jié)果時,我們常使用模擬循環(huán)的變法,但程序的循環(huán)體中變量比較多時,要用表格法對數(shù)據(jù)進行管理,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知△ABC中,若AB=3,AC=4,$\overrightarrow{AB}•\overrightarrow{AC}=6$,則BC=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)隨機變量X~N(2,1),則P(|X|<1)=( 。
附:(若隨機變量ξ~N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%,P(μ-3σ<ξ<μ+3σ)=99.72%)
A.13.59%B.15.73%C.27.18%D.31.46%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=-2cos2x+cosx+1,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ex[x2-(a+2)x+b],曲線y=f(x)在x=0處的切線方程為2a2x+y-b=0,其中e是自然對數(shù)的底數(shù)).
(Ⅰ)確定a,b的關(guān)系式(用a表示b);
(Ⅱ)對于任意負數(shù)a,總存在x>0,使f(x)<M成立,求實數(shù)M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若復(fù)數(shù)z滿足z2=-4,則|1+z|=( 。
A.3B.$\sqrt{3}$C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.雙曲線M:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,直線x=a與雙曲線M漸近線交于點P,若sin∠PF1F2=$\frac{1}{3}$,則該雙曲線的離心率為$\frac{9}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)集合A={x∈N|,0≤x≤2},B={x∈N|1≤x≤3},則A∪B=( 。
A.{1,2}B.{0,1,2,3}C.{x|1≤x≤2}D.{x|0≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.大學(xué)生小王自主創(chuàng)業(yè),在鄉(xiāng)下承包了一塊耕地種植某種水果,每季投入2萬元,根據(jù)以往的經(jīng)驗,每季收獲的此種水果能全部售完,且水果的市場價格和這塊地上的產(chǎn)量具有隨機性,互不影響,具體情況如表:
水果產(chǎn)量(kg)30004000
概率0.40.6
水果市場價格(元/kg)1620
概率0.50.5
(Ⅰ)設(shè)X表示在這塊地種植此水果一季的利潤,求X的分布列及期望;
(Ⅱ)在銷售收入超過5萬元的情況下,利潤超過5萬元的概率.

查看答案和解析>>

同步練習冊答案