分析 (1)法一:要證明PC⊥面ADE,只需證明AD⊥PC,通過(guò)證明$\overrightarrow{DE}•\overrightarrow{PC}=0$即可,然后推出存在點(diǎn)E為PC中點(diǎn).
法二:建立如圖所示的空間直角坐標(biāo)系D-XYZ,設(shè)$\overrightarrow{PE}=λ\overrightarrow{PB}$,通過(guò)$\overrightarrow{PC}•\overrightarrow{DE}$=0得到$λ=\frac{1}{2}$,即存在點(diǎn)E為PC中點(diǎn).
(2)由(1)知求出面ADE的法向量,面PAE的法向量,利用空間向量的數(shù)量積.求解二面角P-AE-D的余弦值.
解答 (1)法一:要證明PC⊥面ADE,易知AD⊥面PDC,即得AD⊥PC,故只需$\overrightarrow{DE}•\overrightarrow{PC}=0$即可,
所以由$(\overrightarrow{DP}+\overrightarrow{PE})•\overrightarrow{PC}=0⇒\overrightarrow{DP}•\overrightarrow{PC}+\overrightarrow{PE}•\overrightarrow{PC}=0⇒|\overrightarrow{PE}|=1$,即存在點(diǎn)E為PC中點(diǎn) …(6分)
法二:建立如圖所示的空間直角坐標(biāo)系D-XYZ,由題意知PD=CD=1,$CE=\sqrt{2}$,設(shè)$\overrightarrow{PE}=λ\overrightarrow{PB}$,∴$\overrightarrow{PE}=λ\overrightarrow{PB}=λ(\sqrt{2},1,-1)$,$\overrightarrow{PC}=(0,1,-1)$
由$\overrightarrow{PC}•\overrightarrow{DE}=\overrightarrow{PC}•(\overrightarrow{DP}+\overrightarrow{PE)}=(0,1,-1)•(\sqrt{2}λ,λ,1-λ)=0$,得$λ=\frac{1}{2}$,
即存在點(diǎn)E為PC中點(diǎn). …(6分)
(2)由(1)知D(0,0,0),$A(\sqrt{2},0,0)$,$E(\frac{{\sqrt{2}}}{2},\frac{1}{2},\frac{1}{2})$,P(0,0,1)$\overrightarrow{DA}=(\sqrt{2},0,0)$,$\overrightarrow{DE}=(\frac{{\sqrt{2}}}{2},\frac{1}{2},\frac{1}{2})$,$\overrightarrow{PA}=(\sqrt{2},0,-1)$,$\overrightarrow{PE}=(\frac{{\sqrt{2}}}{2},\frac{1}{2},-\frac{1}{2})$
設(shè)面ADE的法向量為$\overrightarrow{n_1}=({x_1},{y_1},{z_1})$,面PAE的法向量為$\overrightarrow{n_2}=({x_2},{y_2},{z_2})$
由的法向量為$\left\{\begin{array}{l}\overrightarrow{n_1}•\overrightarrow{DA}=0\\ \overrightarrow{n_1}•\overrightarrow{DE}=0\end{array}\right.$得,$\left\{\begin{array}{l}\sqrt{2}{x_1}=0\\ \sqrt{2}{x_1}+\frac{1}{2}{y_1}+\frac{1}{2}{z_1}=0\end{array}\right.$得$\overrightarrow{n_1}=(0,1,-1)$
同理求得$\overrightarrow{n_2}=(1,0,\sqrt{2})$所以$cosθ=\frac{{\overrightarrow{n_1}•\overrightarrow{n_1}}}{{|\overrightarrow{n_1}|•\overrightarrow{|{n_1}}|}}=-\frac{{\sqrt{3}}}{3}$
故所求二面角P-AE-D的余弦值為$\frac{{\sqrt{3}}}{3}$.…(6分)
點(diǎn)評(píng) 本題考查二面角的平面角的求法,直線與平面垂直的判定定理的應(yīng)用,考查空間想象能力以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 36 | C. | 48 | D. | 120 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 44,45,56 | B. | 44,43,57 | C. | 44,43,56 | D. | 45,43,57 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com