分析 an+1=SnSn+1,可得Sn+1-Sn=SnSn+1,$\frac{1}{{S}_{n+1}}-\frac{1}{{S}_{n}}$=-1,再利用等差數(shù)列的通項(xiàng)公式即可得出.
解答 解:∵an+1=SnSn+1,∴Sn+1-Sn=SnSn+1,
∴$\frac{1}{{S}_{n+1}}-\frac{1}{{S}_{n}}$=-1,
∴數(shù)列$\{\frac{1}{{S}_{n}}\}$是等差數(shù)列,首項(xiàng)為-1,公差為-1.
∴$\frac{1}{{S}_{n}}$=-1-(n-1)=-n,
解得Sn=-$\frac{1}{n}$.
故答案為:$-\frac{1}{n}$.
點(diǎn)評(píng) 本題考查數(shù)列遞推關(guān)系、等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=x2 | B. | y=log2$\frac{1}{x}$ | C. | y=-x | D. | y=($\frac{1}{2}$)x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1,2,3} | B. | {2,3,4} | C. | {0,2,4} | D. | {0,2,3,4} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com