(本題滿分12分)
如圖,在四棱錐中,平面平面,,是等邊三角形,已知,.
(Ⅰ)設是上的一點,證明:平面平面;
(Ⅱ)求四棱錐的體積.
(Ⅰ)由于.故. 又平面平面,平面平面,平面,所以平面,又平面,故平面平面.
(Ⅱ).
解析試題分析:(Ⅰ)由于,,,
所以.
故.
又平面平面,平面平面,
平面,
所以平面,
又平面,
故平面平面.
(Ⅱ)解:過作交于,
由于平面平面,
所以平面.
因此為四棱錐的高,
又是邊長為4的等邊三角形.
因此.
在底面四邊形中,,,
所以四邊形是梯形,在中,斜邊邊上的高為,
此即為梯形的高,
所以四邊形的面積為.
故.
考點:本題考查了空間中的線面關系及體積的計算
點評:立體幾何問題主要是探求和證明空間幾何體中的平行和垂直關系以及空間角、體積等計算問題.對于平行和垂直問題的證明或探求,其關鍵是把線線、線面、面面之間的關系進行靈活的轉(zhuǎn)化.在尋找解題思路時,不妨采用分析法,從要求證的結(jié)論逐步逆推到已知條件
科目:高中數(shù)學 來源: 題型:解答題
直棱柱ABCD—A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(1)求證:平面ACB1⊥平面BB1C1C;
(2)在A1B1上是否存在一點P,使得DP與平面ACB1平行?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在直角梯形PBCD中,,A為PD的中點,如下左圖。將沿AB折到的位置,使,點E在SD上,且,如下圖。
(1)求證:平面ABCD;
(2)求二面角E—AC—D的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖:在多面體EF-ABCD中,四邊形ABCD是平行四邊形,△EAD為正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.
(Ⅰ)求多面體EF-ABCD的體積;
(Ⅱ)求直線BD與平面BCF所成角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四邊形ABCD是正方形,PB^平面ABCD,MA^平面ABCD,PB=AB=2MA.
求證:(1)平面AMD∥平面BPC;(2)平面PMD^平面PBD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(滿分12分)如右圖,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中點。
(Ⅰ)求證:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖,已知多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F為CD的中點.
(Ⅰ)求證:AF⊥平面CDE;
(Ⅱ)求面ACD和面BCE所成銳二面角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知:如圖,在四棱錐中,四邊形為正方形,,且,為中點.
(1)證明://平面;
(2)證明:平面平面;
(3)求二面角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com