在直角梯形PBCD中,,A為PD的中點,如下左圖。將沿AB折到的位置,使,點E在SD上,且,如下圖。
(1)求證:平面ABCD;
(2)求二面角E—AC—D的正切值.

(1)在圖中,由題意可知為正方形,所以在圖中,,
四邊形ABCD是邊長為2的正方形,
因為,ABBC,
所以BC平面SAB,
平面SAB,所以BCSA,又SAAB,
所以SA平面ABCD,  
(2)

解析試題分析:(1)證明:在圖中,由題意可知,

為正方形,所以在圖中,
四邊形ABCD是邊長為2的正方形,
因為,ABBC,
所以BC平面SAB,
平面SAB,所以BCSA,又SAAB,
所以SA平面ABCD,  
(2)在AD上取一點O,使,連接EO。
因為,所以EO//SA
所以EO平面ABCD,過O作OHAC交AC于H,連接EH,
則AC平面EOH,所以ACEH。
所以為二面角E—AC—D的平面角,
中,…11分
,即二面角E—AC—D的正切值為
考點:線面垂直的判定及二面角求解
點評:本題中第二問求二面角采用的是作角求角的思路,在作角時常用三垂線定理法;此外還可用空間向量的方法求解;以A為原點AB,AD,AS為x,y,z軸建立坐標系,寫出各點坐標,代入向量計算公式即可

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖:四棱錐中,,,,

(Ⅰ)證明: 平面;
(Ⅱ)在線段上是否存在一點,使直線與平面成角正弦值等于,若存在,指出點位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面,
,,的中點.

(Ⅰ)求和平面所成的角的大小;
(Ⅱ)證明平面;
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直.,

(1)求直線與平面所成角的正弦值;
(2)線段上是否存在點,使// 平面?若存在,求出;若不存在,說明理由.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,且AB=AD,BC=DC.

(1)求證:平面EFGH;
(2)求證:四邊形EFGH是矩形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在正三棱柱中,,的中點,是線段上的動點(與端點不重合),且.

(1)若,求證:;
(2)若直線與平面所成角的大小為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四邊形中,對角線,,的重心,過點的直線分別交,沿折起,沿折起,正好重合于.

(Ⅰ) 求證:平面平面;
(Ⅱ)求平面與平面夾角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
如圖,在四棱錐中,平面平面,是等邊三角形,已知,

(Ⅰ)設上的一點,證明:平面平面;
(Ⅱ)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖:

(1)求的大;
(2)當時,判斷的形狀,并求的值.

查看答案和解析>>

同步練習冊答案