如圖,在四棱錐中,底面,
,,是的中點(diǎn).
(Ⅰ)求和平面所成的角的大;
(Ⅱ)證明平面;
(Ⅲ)求二面角的正弦值.
(1)(2)要證明線面垂直關(guān)鍵里用線面垂直的判定定理來(lái)得到證明。
(3)
解析試題分析:(Ⅰ)解:在四棱錐中,因底面,平面,故.又,,從而平面.
故在平面內(nèi)的射影為,
從而為和平面所成的角.
在中,,故.
所以和平面所成的角的大小為.
(Ⅱ)證明:在四棱錐中,
因底面,平面,故.
由條件,,面.又面,.
由,,可得.是的中點(diǎn),,
.綜上得平面.
(Ⅲ)解:過(guò)點(diǎn)作,垂足為,連結(jié).由(Ⅱ)知,平面,在平面內(nèi)的射影是,則.
因此是二面角的平面角.由已知,得.設(shè),得
,,,.
在中,,,則
.在中,
考點(diǎn):空間的線面角和二面角的平面角,垂直的證明
點(diǎn)評(píng):解決的關(guān)鍵是熟練的根據(jù)角的定義,作出角,并能證明,同時(shí)結(jié)合三角形來(lái)解得,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示的幾何體中,四邊形為矩形,為直角梯形,且 = = 90°,平面平面,,
(1)若為的中點(diǎn),求證:平面;
(2)求平面與平面所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
直棱柱ABCD—A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(1)求證:平面ACB1⊥平面BB1C1C;
(2)在A1B1上是否存在一點(diǎn)P,使得DP與平面ACB1平行?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F為CE上的點(diǎn),且BF平面AC E.
(1)求證:AEBE;
(2)求三棱錐D—AEC的體積;
(3)求二面角A—CD—E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,在直角梯形中,,,且.
現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,為的中點(diǎn),如圖2.
(1)求證:∥平面;
(2)求證:平面;
(3)求點(diǎn)到平面的距離.
圖 圖
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,平面ABCD⊥平面ABEF,又ABCD是正方形,ABEF是矩形,且G是EF的中
點(diǎn).
(1)求證:平面AGC⊥平面BGC;
(2)求GB與平面AGC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角梯形PBCD中,,A為PD的中點(diǎn),如下左圖。將沿AB折到的位置,使,點(diǎn)E在SD上,且,如下圖。
(1)求證:平面ABCD;
(2)求二面角E—AC—D的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(滿分12分)如右圖,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中點(diǎn)。
(Ⅰ)求證:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com