【題目】如圖,是正方體的棱的中點,下列命題中真命題是( )
A.過點有且只有一條直線與直線都相交
B.過點有且只有一條直線與直線都垂直
C.過點有且只有一個平面與直線都相交
D.過點有且只有一個平面與直線都平行
【答案】ABD
【解析】
點不在這兩異面直線中的任何一條上,所以,過點有且只有一條直線與直線都相交, A正確.過點有且只有一條直線與直線都垂直, B正確.過點有無數(shù)個平面與直線都相交,C不正確.過點有且只有一個平面與直線都平行,D正確.
解:直線與 是兩條互相垂直的異面直線,點不在這兩異面直線中的任何一條上,如圖所示:
取的中點,則,且,設 與交于,則點 共面,
直線必與直線相交于某點.
所以,過點有且只有一條直線與直線都相交;故A正確.
過點有且只有一條直線與直線都垂直,此垂線就是棱,故B正確.
過點有無數(shù)個平面與直線都相交,故C不正確.
過點有且只有一個平面與直線都平行,此平面就是過點與正方體的上下底都平行的平面,故D正確.
故選:ABD.
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐P-ABCD的三視圖如下圖所示,E是側棱PC上的動點.
(1)求證:BD⊥AE
(2)若點E為PC的中點,求二面角D-AE-B的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為F,過F的直線與拋物線交于A,B兩點,點O為坐標原點,則下列命題中正確的個數(shù)為( )
①面積的最小值為4;
②以為直徑的圓與x軸相切;
③記,,的斜率分別為,,,則;
④過焦點F作y軸的垂線與直線,分別交于點M,N,則以為直徑的圓恒過定點.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年春節(jié)期間,武漢市爆發(fā)了新型冠狀病毒肺炎疫情,在黨中央的堅強領導下,全國人民團結一心,眾志成城,共同抗擊疫情.某中學寒假開學后,為了普及傳染病知識,增強學生的防范意識,提高自身保護能力,校委會在全校學生范圍內,組織了一次傳染病及個人衛(wèi)生相關知識有獎競賽(滿分100分),競賽獎勵規(guī)則如下,得分在內的學生獲三等獎,得分在內的學生獲二等獎,得分在內的學生獲一等獎,其他學生不得獎.教務處為了解學生對相關知識的掌握情況,隨機抽取了100名學生的競賽成績,并以此為樣本繪制了如下樣本頻率分布直方圖.
(1)現(xiàn)從該樣本中隨機抽取兩名學生的競賽成績,求這兩名學生中恰有一名學生獲獎的概率;
(2)若該校所有參賽學生的成績近似服從正態(tài)分布,其中為樣本平均數(shù)的估計值,利用所得正態(tài)分布模型解決以下問題:
(i)若該校共有10000名學生參加了競賽,試估計參賽學生中成績超過79分的學生數(shù)(結果四舍五入到整數(shù));
(ii)若從所有參賽學生中(參賽學生數(shù)大于10000)隨機抽取3名學生進行座談,設其中競賽成績在64分以上的學生數(shù)為,求隨機變量的分布列和均值.
附:若隨機變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱的底面是等邊三角形,在底面ABC上的射影為△ABC的重心G.
(1)已知,證明:平面平面;
(2)已知平面與平面ABC所成的二面角為60°,G到直線AB的距離為a,求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱,中,側面是菱形,是中點,平面,平面與棱交于點,.
(1)求證:四邊形為平行四邊形;
(2)若與平面所成角的正弦值為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com