13.已知f(x)=-ex+ex(e為自然對(duì)數(shù)的底數(shù))
(Ⅰ)求函數(shù)f(x)的最大值;
(Ⅱ)設(shè)g(x)=lnx+$\frac{1}{2}$x2+ax,若對(duì)任意x1∈(0,2],總存在x2∈(0,2].使得g(x1)<f(x2),求實(shí)數(shù)a的取值范圍.

分析 (Ⅰ)求得f(x)的導(dǎo)數(shù),由導(dǎo)數(shù)大于0,可得增區(qū)間;導(dǎo)數(shù)小于0,可得減區(qū)間,進(jìn)而得到函數(shù)f(x)的最大值;
(Ⅱ)由題意可得g(x1)<f(x2max.由(Ⅰ)可得問(wèn)題轉(zhuǎn)化為g(x)<0在x∈(0,2]恒成立.運(yùn)用參數(shù)分離,求得不等式右邊函數(shù)的最大值,即可得到所求a的范圍.

解答 解:(Ⅰ)f(x)=-ex+ex的導(dǎo)數(shù)為f′(x)=-ex+e,
當(dāng)x∈(-∞,1)時(shí),f′(x)>0,f(x)單調(diào)遞增;
當(dāng)x∈(1,+∞)時(shí),f′(x)<0,f(x)單調(diào)遞減;
故f(x)max=f(1)=0;
(Ⅱ)對(duì)任意x1∈(0,2],總存在x2∈(0,2],
使得g(x1)<f(x2)等價(jià)于g(x1)<f(x2max
由(Ⅰ)可知f(x2max=f(1)=0.
問(wèn)題轉(zhuǎn)化為g(x)<0在x∈(0,2]恒成立.
參變量分離得:-a>$\frac{lnx+\frac{1}{2}{x}^{2}}{x}$=$\frac{lnx}{x}$+$\frac{1}{2}$x,
令r(x)=$\frac{lnx}{x}$+$\frac{1}{2}$x,x∈(0,2],
r′(x)=$\frac{1-lnx}{{x}^{2}}$+$\frac{1}{2}$,由0<x≤2時(shí),1-lnx>0,得r′(x)>0,
即r(x)在x1∈(0,2]上單增.
故-a>r(x)max=r(2)=$\frac{ln2}{2}$+1.
綜上:a<-$\frac{ln2}{2}$-1,
即a的取值范圍為  (-∞,-$\frac{ln2}{2}$-1).

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求單調(diào)區(qū)間和極值、最值,考查任意性和存在性的解法,注意運(yùn)用轉(zhuǎn)化思想和構(gòu)造函數(shù)法,求出導(dǎo)數(shù)判斷單調(diào)性,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.圓x2+y2-2ax=0上有且僅有一點(diǎn)滿足:到定點(diǎn)O(0,0)與A(3,0)的距離之比為2,則實(shí)數(shù)a的取值范圍為{1,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{x^2}{({x>0})\;}\\{{3^x}(x<0})\;}\end{array}}$,則f[f(-2)]=$\frac{1}{81}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知a,b∈R,不等式$|\begin{array}{l}{x^2}&{1}&{x}\\&{-a}&{1}\\{x}&{a}&{-1}\end{array}|$>0的解為1<x<2,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.正三棱錐的側(cè)面與底面所成的二面角的余弦值為$\frac{\sqrt{3}}{3}$,則其相鄰兩側(cè)面所成的二面角的余弦值是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.徐州、蘇州兩地相距500千米,一輛貨車(chē)從徐州勻速行駛到蘇州,規(guī)定速度不得超過(guò)100千米/小時(shí).已知貨車(chē)每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時(shí))的平方成正比,比例系數(shù)為0.01;固定部分為100元.
(1)把全程運(yùn)輸成本y(元)表示為速度v(千米/時(shí))的函數(shù),并指出這個(gè)函數(shù)的定義域;
(2)為了使全程運(yùn)輸成本最小,汽車(chē)應(yīng)以多大速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn)、x軸的正半軸為極軸建立極坐標(biāo)系.已知點(diǎn)P($\sqrt{2}$,$\frac{7π}{4}$)在直線l:ρcosθ+2ρcosθ+a=0(a∈R)上.
(Ⅰ)求直線l的直角坐標(biāo)方程.
(Ⅱ)若點(diǎn)A在直線l上,點(diǎn)B在曲線C:$\left\{\begin{array}{l}{x=t}\\{y=\frac{1}{4}{t}^{2}}\end{array}\right.$(t為參數(shù))上,求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=log2$\frac{2x-1}{2x+1}$,g(x)=log2$\frac{2x+1}{8x+12}$.
(1)求證:函數(shù)y=f(x)的圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱;
(2)求證:f(x+1)-2=g(x),并指出函數(shù)y=g(x)圖象對(duì)稱中心的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知圓的方程為x2+y2=2,若直線y=x-b與圓相切,則b等于(  )
A.2B.-2C.0D.2或-2

查看答案和解析>>

同步練習(xí)冊(cè)答案